Skip to main content
Log in

Application of optimization methods for finding equilibrium states of two-dimensional crystals

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A two-dimensional model of a multilayer material and a procedure for simulating its properties based on global optimization methods are proposed. This model is applied for the case of a two-dimensional crystal. Global minima of the interaction energy of the material’s atoms are found, and geometric characteristics of its corresponding equilibrium states are described. The resulting lattices, in particular graphene’s lattices, agree with experimental data, which confirms the validity of the proposed approach. This approach can be extended to a wider class of layered structures, and it can be used for determining the mechanical properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Ferrari, et al., “Science and technology roadmap for graphene, related two-dimensional crystals and hybrid systems,” Nanoscale 7 (11), 4598–4810 (2015).

    Article  Google Scholar 

  2. A. N. Andriotis, E. Richter, and M. Menon, “Prediction of a new graphene like Si 2 BN solid,” Phys. Review 93 (8), 1413–1414 (2016).

    Article  Google Scholar 

  3. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446 (7131), 60–63 (2007).

    Article  Google Scholar 

  4. F. Memarian, A. Fereidoon, and M. D. Ganji, “Graphene Young’s modulus: Molecular mechanics and DFT treatments,” Superlattices Microstruct. 85, 348–356 (2015).

    Article  Google Scholar 

  5. A. Sadeghirad, N. Su, and F. Liu, “Mechanical modeling of graphene using the three-layer-mesh bridging domain method,” Comput. Meth. Appl. Mech. Eng. 294, 278–298 (2015).

    Article  MathSciNet  Google Scholar 

  6. S. P. Kiselev and E. V. Zhirov, “Numerical simulation os strain and destruction of graphene under uniaxial stretching by molecular dynamics,” Fiz. Mezomekhan. 15 (2), 69–76 (2012).

    Google Scholar 

  7. Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, “Anisotropic mechanical properties of graphene sheets from molecular dynamics,” Phys. B Condens. Matter 405 (5), 1301–1306 (2010).

    Article  Google Scholar 

  8. K. Q. Dang, J. P. Simpson, and D. E. Spearot, “Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations,” Scr. Mater. 76, 41–44 (2014).

    Article  Google Scholar 

  9. A. Tabarraei and X. Wang, “A molecular dynamics study of nanofracture in monolayer boron nitride,” Mater. Sci. Eng. A 641, 225–230 (2015).

    Article  Google Scholar 

  10. S. Seifoori and H. Hajabdollahi, “Impact behavior of single-layered graphene sheets based on analytical model and molecular dynamics simulation,” Appl. Surf. Sci. 351, 565–572 (2015).

    Article  Google Scholar 

  11. D. Sfyris, G. I. Sfyris, and C. Galiotis, “Constitutive modeling of some 2D crystals: Graphene, hexagonal BN, MoS2, WSe2 and NbSe2,” Int. J. Solids Struct. 66, 98–110 (2014).

    Article  Google Scholar 

  12. B. Zhang, H. Xiao, G. Yang, and X. Liu, “Finite element modelling of the instability in rapid fracture of graphene,” Eng. Fract. Mech. 141, 111–119 (2015).

    Article  Google Scholar 

  13. S. A. Lurie, M. A. Posypkin, and Yu. O. Solyaev, “A Method for the identification of scale parameters of the gradient elasticity theory based on mumerical experiments for planar composite structures,” Int. J. Open Inf. Technol. 3 (6), 1–6 (2015).

    Google Scholar 

  14. B. T. Polyak, Introduction to Optimization (Nauka, Moscow, 1983; Optimization Software, New York, 1987).

    MATH  Google Scholar 

  15. A. V. Panteleev and T. A. Letova, Optimization Methods: Problems and Examples (Vysshaya shkola, Moscow, 2002) [in Russian].

    Google Scholar 

  16. Yu. G. Evtushenko, “A numerical global optimization method of functions (search on a nonuniform grid),” Zh. Vychisl. Mat. Mat. Fiz. 11 (6), 1390–1403 (1971).

    MATH  Google Scholar 

  17. Y. Evtushenko and M. Posypkin, “A deterministic approach to global box-constrained optimization,” Optim. Lett. 7 (4), 819–829 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu. G. Evtushenko and M. A. Posypkin, “An application of the nonuniform covering method to global optimization of mixed integer nonlinear problems,” Comput. Math. Math. Phys. 51, 1286–1298 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ya. D. Sergeev and D. E. Kvasov, Diagonal Global Optimization Methods (Fizmatlit, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  20. J. D. Pintér, Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications (Kluwer, Dordrecht, 2013).

    Google Scholar 

  21. K. K. Abgaryan and M. A. Posypkin, “Optimization methods as applied to parametric identification of interatomic potentials,” Comput. Math. Math. Phys. 54, 1929–1936 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Phys. Rev. B 37 (12), 6991 (1988).

    Article  Google Scholar 

  23. A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, “Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs,” Science 350 (6267), 1513–1516 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Posypkin.

Additional information

Original Russian Text © Yu.G. Evtushenko, S.A. Lurie, M.A. Posypkin, Yu.O. Solyaev, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 12, pp. 2032–2041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtushenko, Y.G., Lurie, S.A., Posypkin, M.A. et al. Application of optimization methods for finding equilibrium states of two-dimensional crystals. Comput. Math. and Math. Phys. 56, 2001–2010 (2016). https://doi.org/10.1134/S0965542516120083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516120083

Keywords

Navigation