Skip to main content
Log in

Discrete spectrum of cranked quantum and elastic waveguides

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The spectrum of quantum and elastic waveguides in the form of a cranked strip is studied. In the Dirichlet spectral problem for the Laplacian (quantum waveguide), in addition to well-known results on the existence of isolated eigenvalues for any angle α at the corner, a priori lower bounds are established for these eigenvalues. It is explained why methods developed in the scalar case are frequently inapplicable to vector problems. For an elastic isotropic waveguide with a clamped boundary, the discrete spectrum is proved to be nonempty only for small or close-to-π angles α. The asymptotics of some eigenvalues are constructed. Elastic waveguides of other shapes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Exner, “A quantum pipette,” J. Phys. A 28, 5323–6330 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. A. Nazarov, “The asymptotics of frequencies of elastic waves trapped by a small crack in an anisotropic waveguide,” Mech. Solids 45, 856–864 (2010).

    Article  Google Scholar 

  3. Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica, “Quantum bound states in open geometries,” Phys. Rev. B 44 (15), 8028–8034 (1991).

    Article  Google Scholar 

  4. S. A. Nazarov, “Discrete spectrum of cranked, branching, and periodic waveguides,” St. Petersburg Math. J. 23 (2), 351–379 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. A. Nazarov and A. V. Shanin, “Trapped modes in angular joints of 2D waveguides,” Appl. Anal. 93 (3), 572–582 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. A. Nazarov, “Asymptotic formula for an eigenvalue of the Dirichlet problem in a cranked waveguide,” Vestn. St. Petersburg Univ. Math. 44 (3), 190–196 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Dauge and N. Raymond, “Plane waveguides with corners in the small angle limit,” J. Math. Phys. 53 (2012). doi 10.1063/1.4769993

  8. S. A. Nazarov, “Structure of the spectrum of a net of quantum waveguides and bounded solutions of a model problem at the threshold,” Dokl. Math. 90 (2), 637–641 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Rellich, “Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebiete,” Jber. Deutsch. Math.-Verein. 53 (1), 57–65 (1943).

    MathSciNet  MATH  Google Scholar 

  10. G. Cardone, T. Durante, and S. A. Nazarov, “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends,” SIAM J. Math. Anal. 42 (6), 2581–2609 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningr. Gos. Univ., Leningrad, 1980; Reidel, Dordrecht, 1987).

    Google Scholar 

  12. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).

    Book  MATH  Google Scholar 

  13. P. Freitas, “Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi,” J. Funct. Anal. 251, 376–398 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Nazarov, “Localization of the eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices,” Sib. Math. J. 54 (3), 517–532 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed T-shaped waveguide,” Comput. Math. Math. Phys. 54 (5), 811–830 (2014).

    Article  MathSciNet  Google Scholar 

  16. I. I. Vorovich and V. A. Babeshko, Mixed Dynamic Problems of Elasticity Theory for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  17. S. A. Nazarov, “Nonreflecting distortions of an isotropic strip clamped between rigid punches,” Comput. Math. Math. Phys. 53 (10), 1512–1522 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. A. Nazarov, “Elastic waves trapped by a homogeneous anisotropic semicylinder,” Sb. Math. 204 (11), 1639–1670 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension,” J. Appl. Mech. 19 (2), 526–528 (1952).

    Google Scholar 

  20. V. Z. Parton and P. I. Perlin, Mathematical Methods of the Theory of Elasticity (Nauka, Moscow, 1981; Mir, Moscow, 1984).

    MATH  Google Scholar 

  21. P. Duclos and P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions,” Rev. Math. Phys. 7 (1), 73–102 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. V. Kamotskii and S. A. Nazarov, “Elastic waves localized near periodic sets of flaws,” Dokl. Phys. 44 (10), 715–717 (1999).

    MathSciNet  MATH  Google Scholar 

  23. V. A. Kondrat’ev, “Boundary value problems for elliptic equations in domains with conical or corner points,” Tr. Mosk. Mat. O–va 16, 219–292 (1963).

    Google Scholar 

  24. V. G. Maz’ya and B. A. Plamenevskii, “On the coefficients in asymptotics of solutions of elliptic boundary value problems in domains with conical points,” Math. Nachr. 76, 29–60 (1977).

    Article  MathSciNet  Google Scholar 

  25. V. R. Maz’ya and B. A. Plamenevskii, “Estimates in L p and Hölder classes and the Miranda–Agmon maximum principle for solutions to elliptic boundary value problems in domains with singular points on the boundary,” Math. Nachr. 77, 25–82 (1977).

    Google Scholar 

  26. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes,” Russ. Math. Surv. 54 (5), 947–1014 (1999).

    Article  MATH  Google Scholar 

  27. M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964).

    MATH  Google Scholar 

  28. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., RI, Providence, 1992).

    MATH  Google Scholar 

  29. S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51 (5), 866–878 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations (Nauka, Moscow, 1969; Noordhoff, Leyden, 1974).

    MATH  Google Scholar 

  31. L. Friedlander, “On the spectrum of the Dirichlet Laplacian in a narrow strip,” Israel J. Math. 170, 337–354 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Borisov and P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains,” Ann. Inst. Henri Poincare (C) Anal. Non-lineaire 26 (2), 547–560 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Borisov and P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in R d,” J. Funct. Anal. 258 (3), 893–912 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  34. S. A. Nazarov, “Spectral properties of a thin layer with a doubly periodic family of thinning regions,” Theor. Math. Phys. 174 (3), 343–359 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory (Nauka, Moscow, 1972; Alpha Science, Oxford, UK, 2008).

    MATH  Google Scholar 

  36. S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide,” Theor. Math. Phys. 167 (2), 606–627 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. W. G. Mazja, S. A. Nazarov, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten (Akademie-Verlag, Berlin, 1991), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Original Russian Text © S.A. Nazarov, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 5, pp. 879–895.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Discrete spectrum of cranked quantum and elastic waveguides. Comput. Math. and Math. Phys. 56, 864–880 (2016). https://doi.org/10.1134/S0965542516050171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516050171

Keywords

Navigation