Skip to main content
Log in

Analytical Approximations of the Characteristics of Nighttime Hydroxyl on Mars and Intra-Annual Variations

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Observations of vibrationally excited hydroxyl (OH*) emissions are widely used to obtain information about the dynamics and composition of the atmosphere. We present some analytical approximations for the characteristics of the hydroxyl layer in the Martian atmosphere such as OH* concentration at the maximum and height of the maximum, as well as relations for estimating the influence of various factors on the OH* layer in night conditions. These characteristics depend on the temperature of the environment, concentration of atomic oxygen, and their vertical gradients. The relations are applied to the results of numerical modeling using the global atmospheric circulation model for prediction of seasonal behavior of the hydroxyl layer on Mars. Annual and intra-annual variations in the concentration of excited hydroxyl and layer height from the modeling data have both some similarities with those of the Earth and significant differences. The concentration and height maximum in the equatorial, northern and southern midlatitudes vary depending on the season; the maximum concentration and the minimum height fall on the first half of the year. Model calculations confirmed the presence of the peak OH* concentration at polar latitudes in winter at an altitude of approximately 50 km with the volume emission densities of 2.1, 1.4, and 0.6 × 104 photons cm–3 s–1 for vibrational level transitions 1–0, 2–1, and 2–0, respectively. The relations obtained may be used for the analysis of measurements and interpretation of their variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Adler-Golden, S., Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res., 1997, vol. 102, pp. 19969–19976. https://doi.org/10.1029/97JA01622

    Article  ADS  Google Scholar 

  2. Ammosov, P., Gavrilyeva, G., Ammosova, A., and Koltovskoi, I., Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Space Res., 2014, vol. 54, pp. 2518–2524. https://doi.org/10.1016/j.asr.2014.06.007

    Article  ADS  Google Scholar 

  3. Barbier, D., L’emission de la raie rouge du ciel nocturne en Afrique, Ann. Geophys., 1961, vol. 17, pp. 305–318.

    Google Scholar 

  4. Bertaux, J.L., Gondet, B., Lefevre, F., Bibring, J.P., and Montmessin, F., First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions, J. Geophys. Res., 2012, vol. 117, p. J04. https://doi.org/10.1029/2011JE003890

    Article  Google Scholar 

  5. Buriti, R.A., Takahashi, H., Lima, L.M., and Medeiros, A.F., Equatorial planetary waves in the mesosphere observed by airglow periodic oscillations, Adv. Space Res., 2005, vol. 35, pp. 2031–2036. https://doi.org/10.1016/j.asr.2005.07.012

    Article  ADS  Google Scholar 

  6. Burkholder, J.B., Sander, S.P., Abbatt, J., Barker, J.R., Cappa, C., Crounse, J.D., Dibble, T.S., Huie, R.E., Kolb, C.E., Kurylo, M.J., et al., Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation No. 19, JPL Publication 19-5, Pasadena, CA: Jet Propulsion Laboratory, 2020. http://jpldataeval.jpl.nasa.gov.

    Google Scholar 

  7. Caridade, P.J.S.B., Horta, J.-Z.J., and Varandas, A.J.C., Implications of the O + OH reaction in hydroxyl nightglow modeling, Atmos. Chem. Phys., 2013, vol. 13, pp. 1–13. https://doi.org/10.5194/acp-13-1-2013

    Article  ADS  Google Scholar 

  8. Chalamala, B.R. and Copeland, R.A., Collision dynamics of OH (X2Π, v = 9), J. Chem. Phys., 1993, vol. 99, pp. 5807–5811. https://doi.org/10.1063/1.465932

    Article  ADS  Google Scholar 

  9. Clancy, R.T., Sandor, B.J., Garcia-Munoz, A., Lefevre, F., Smith, M.D., Wolff, M.J., Montmessin, F., Murchie, S.L., and Nair, H., First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere, Icarus, 2013, vol. 226, pp. 272–281. https://doi.org/10.1016/j.icarus.2013.05.035

    Article  ADS  Google Scholar 

  10. Dalin, P., Perminov, V., Pertsev, N., and Romejko, V., Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds, J. Geophys. Res., 2020, vol. 125, p. e2019JD030814. https://doi.org/10.1029/2019JD030814

  11. Dodd, J.A., Lipson, S.J., and Blumberg, W.A.M., Formation and vibrational relaxation of oh(X2Πi, v) by O2 and CO2, J. Chem. Phys., 1991, vol. 95, pp. 5752–5762. https://doi.org/10.1063/1.461597

    Article  ADS  Google Scholar 

  12. Forget, F., Hourdin, F., and Talagrand, O., CO2 snowfall on Mars: Simulation with a general circulation model, Icarus, 1998, vol. 131, pp. 302–316. https://doi.org/10.1006/icar.1997.5874

    Article  ADS  Google Scholar 

  13. Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., and Huot, J.-P., Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 1999, vol. 104, pp. 24155–24176. https://doi.org/10.1029/1999JE001025

    Article  ADS  Google Scholar 

  14. Forget, F., Millour, E., Montabone, L., and Lefevre, F., Non condensable gas enrichment and depletion in the Martian polar regions, Mars Atmosphere: Modeling and Observations, 2008, vol. 1447, p. 9106.

    ADS  Google Scholar 

  15. Fukuyama, K., Airglow variations and dynamics in the lower thermosphere and upper mesosphere—II. Seasonal and long-term variations, J. Atmos. Terr. Phys., 1977, vol. 39, pp. 1–14.

    Article  ADS  Google Scholar 

  16. Gao, H., Xu, J., and Wu, Q., Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER, J. Geophys. Res., 2010, vol. 115, p. A06313. https://doi.org/10.1029/2009JA014641

    Article  ADS  Google Scholar 

  17. García-Muñoz, A., McConnell, J.C., McDade, I.C., and Melo, S.M.L., Airglow on Mars: Some model expectations for the OH Meinel bands and the O2 IR atmospheric band, Icarus, 2005, vol. 176, pp. 75–95. https://doi.org/10.1016/j.icarus.2005.01.006

    Article  ADS  Google Scholar 

  18. Gavrilov, N.M., Shiokawa, K., and Ogawa, T., Seasonal variations of medium-scale gravity wave parameters in the lower thermosphere obtained from SATI observations at Shigaraki, Japan, J. Geophys. Res., 2002, vol. 107, no. D24, p. 4755. https://doi.org/10.1029/2001JD001469

    Article  Google Scholar 

  19. Gavrilyeva, G.A., Ammosov, P.P., and Koltovskoi, I.I., Semidiurnal thermal tide in the mesopause region over Yakutia, Geomagn. Aeron., 2009, vol. 49, no. 1, pp. 110–114. https://doi.org/10.1134/S0016793209010150

    Article  ADS  Google Scholar 

  20. Gérard, J.-C., Soret, L., Saglam, A., Piccioni, G., and Drossart, P., The distributions of the OH Meinel and O2 (a1∆–X3Σ) nightglow emissions in the Venus mesosphere based on VIRTIS observations, Adv. Space Res., 2010, vol. 45, pp. 1268–1275. https://doi.org/10.1016/j.asr.2010.01.022

    Article  ADS  Google Scholar 

  21. Gorinov, D.A., Khatuntsev, I.V., Zasova, L.V., Turin, A.V., and Piccioni, G., Circulation of Venusian atmosphere at 90–110 km based on apparent motions of the O2 1.27 μm nightglow from VIRTIS-M (Venus Express) data, Geophys. Res. Lett., 2018, vol. 45, pp. 2554–2562. https://doi.org/10.1002/2017GL076380

    Article  ADS  Google Scholar 

  22. Grygalashvyly, M., Sonnemann, G.R., Lubken, F.-J., Hartogh, P., and Berger, U., Hydroxyl layer: Mean state and trends at midlatitudes, J. Geophys. Res., 2014, vol. 119, pp. 12391–12419. https://doi.org/10.1002/2014JD022094

    Article  Google Scholar 

  23. Harrison, A.W., Evans, W.F.J., and Llewellyn, E.J., Study of the (4-1) and (5-2) hydroxyl bands in the night airglow, Can. J. Phys., 1971, vol. 49, pp. 2509–2517.

    Article  ADS  Google Scholar 

  24. Kaye, J.A., On the possible role of the reaction O + HO2 → OH + O2 in OH airglow, J. Geophys. Res., 1988, vol. 93, pp. 285–288.

    Article  ADS  Google Scholar 

  25. Krasnopolsky, V.A., Photochemistry of the Martian atmosphere: Seasonal, latitudinal, and diurnal variations, Icarus, 2006, vol. 185, pp. 153–170. https://doi.org/10.1016/j.icarus.2006.06.003

    Article  ADS  Google Scholar 

  26. Krasnopolsky, V.A., Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere, Icarus, 2010, vol. 207, pp. 638–647. https://doi.org/10.1016/j.icarus.2009.12.036

    Article  ADS  Google Scholar 

  27. Krasnopolsky, V.A., Nighttime photochemical model and night airglow on Venus, Planet. Space Sci., 2013, vol. 85, pp. 78–88. https://doi.org/10.1016/j.pss.2013.05.022

    Article  ADS  Google Scholar 

  28. Krasnopolsky, V.A. and Lefèvre, F., Chemistry of the atmospheres of Mars, Venus, and Titan, in Comparative Climatology of Terrestrial Planets, Mackwell, S.J., , Eds., Tucson: Univ. Arizona, 2013, pp. 231–275. https://doi.org/10.2458/azu_uapress_9780816530595-ch11

    Book  Google Scholar 

  29. Krassovsky, V.I., Chemistry of the upper atmosphere, Space Res., 1963, vol. 3, pp. 96–116.

    Google Scholar 

  30. Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F., Three-dimensional modeling of ozone on Mars, J. Geophys. Res., 2004, vol. 109, p. E07004. https://doi.org/10.1029/2004JE002268

    Article  ADS  Google Scholar 

  31. Lefèvre, F., Bertaux, J.-L., Clancy, R.T., Encrenaz, T., Fast, K., Forget, F., Lebonnois, S., Montmessin, F., and Perrier, S., Heterogeneous chemistry in the atmosphere of Mars, Nature, 2008, vol. 454, pp. 971–975. https://doi.org/10.1038/nature07116

    Article  ADS  Google Scholar 

  32. Lindner, B.L., Ozone on Mars: The effects of clouds and airborne dust, Planet. Space Sci., 1988, vol. 36, pp. 125–144. https://doi.org/10.1016/0032-0633(88)90049-9

    Article  ADS  Google Scholar 

  33. Liu, G. and Shepherd, G.G., An empirical model for the altitude of the OH nightglow emission, Geophys. Res. Lett., 2006, vol. 33, p. L09805. https://doi.org/10.1029/2005GL025297

    Article  ADS  Google Scholar 

  34. Liu, G., Shepherd, G.G., and Roble, R.G., Seasonal variations of the nighttime O(1S) and OH airglow emission rates at mid-to-high latitudes in the context of the large-scale circulation, J. Geophys. Res., 2008, vol. 113, p. A06302. https://doi.org/10.1029/2007JA012854

    Article  ADS  Google Scholar 

  35. Llewellyn, E.J., Long, B.H., and Solheim, B.H., The quenching of OH* in the atmosphere, Planet. Space Sci., 1978, vol. 26, pp. 525–531. https://doi.org/10.1016/0032-0633(78)90043-0

    Article  ADS  Google Scholar 

  36. Lopez-Gonzalez, M.J., Rodríguez, E., Shepherd, G.G., Sargoytchev, S., Shepherd, M.G., Aushev, V.M., Brown, S., García-Comas, M., and Wiens, R.H., Tidal variations of O2 atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations, Ann. Geophys., 2005, vol. 23, pp. 3579–3590. https://doi.org/10.5194/angeo-23-3579-2005

    Article  ADS  Google Scholar 

  37. Lopez-Gonzalez, M.J., Rodríguez, E., García-Comas, M., Costa, V., Shepherd, M.G., Shepherd, G.G., Aushev, V.M., and Sargoytchev, S., Climatology of planetary wave type oscillations with periods of 2–20 days derived from O2 atmospheric and OH(6-2) airglow observations at mid-latitude with SATI, Ann. Geophys., 2009, vol. 27, pp. 3645–3662. https://doi.org/10.5194/angeo-27-3645-2009

    Article  ADS  Google Scholar 

  38. Makhlouf, U.B., Picard, R.H., and Winick, J.R., Photochemical-dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow, J. Geophys. Res., 1995, vol. 100, pp. 11289—11311. https://doi.org/10.1029/94JD03327

  39. Marsh, D.R., Smith, A.K., Mlynczak, M.G., and Russell, J.M. III, Saber observations of the OH Meinel airglow variability near the mesopause, J. Geophys. Res., 2006, vol. 111, p. A10S05. https://doi.org/10.1029/2005JA011451

    Article  ADS  Google Scholar 

  40. McDade, I.C. and Llewellyn, E.J., Kinetic parameters related to sources and sinks of vibrationally excited OH in the nightglow, J. Geophys. Res., 1987, vol. 92, pp. 7643–7650. https://doi.org/10.1029/JA092iA07p07643

    Article  ADS  Google Scholar 

  41. Medvedeva, I.V. and Ratovsky, K.G., Manifestation of wave activity in the upper atmosphere during winter sudden stratospheric warmings, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2020, vol. 17, no. 6, pp. 159–166. https://doi.org/10.21046/2070-7401-2020-17-6-159-166

    Article  Google Scholar 

  42. Medvedeva, I.V., Semenov, A.I., Pogoreltsev, A.I., and Tatarnikova, A.V., Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations, J. Atmos. Sol.-Terr. Phys., 2019, vol. 187, pp. 22–32. https://doi.org/10.1016/j.jastp.2019.02.005

    Article  ADS  Google Scholar 

  43. Meriwether, J.W., Jr., A review of the photochemistry of selected nightglow emissions from the mesopause, J. Geophys. Res., 1989, vol. 94, pp. 14629–14646. https://doi.org/10.1029/JD094iD12p14629

    Article  ADS  Google Scholar 

  44. Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., Lefevre, F., Montmessin, F., and Chaufray, J.-Y., López-Valverde M.A., et al., The Mars climate database (version 5.3), Scientific Workshop: “From Mars Express to ExoMars,” 2018. https://ui.adsabs.harvard.edu/link_gateway/2018fmee.confE.68M/PUB_PDF.

  45. Mlynczak, M.G., Hunt, L.A., Mast, J.C., Marshall, B.T., Russell, IIIJ.M., Smith, A.K., Siskind, D.E., Yee, J.-H., Mertens, C.J., Martin-Torres, F.J., et al., Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res., 2013, vol. 118, pp. 5724–5735. https://doi.org/10.1002/jgrd.50401

    Article  Google Scholar 

  46. Mlynczak, M.G., Hunt, L.A., Marshall, B.T., Mertens, C.J., Marsh, D.R., Smith, A.K., Russell, J.M., Siskind, D.E., and Gordley, L.L., Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results, J. Geophys. Res., 2014, vol. 119, pp. 3516–3526. https://doi.org/10.1002/2013JD021263

    Article  Google Scholar 

  47. Mulligan, F.G., Dyrland, M.E., Sigernes, F., and Deehr, C.S., Inferring hydroxyl layer peak heights from ground-based measurements of OH (6–2) band integrated emission rate at longyearbyen (78° N, 16° E), Ann. Geophys., 2009, vol. 27, pp. 4197–4205. https://doi.org/10.5194/angeo-27-4197-2009

    Article  ADS  Google Scholar 

  48. Nagy, A.F., Lui, S.C., and Baker, D.J., Vibrationally-excited hydroxyl molecules in the lower atmosphere, Geophys. Res. Lett., 1976, vol. 3, pp. 731–734. https://doi.org/10.1029/GL003i012p00731

    Article  ADS  Google Scholar 

  49. Nair, H., Allen, M., Anbar, A.D., Yung, Y.L., and Clancy, R.T., A photochemical model of the Martian atmosphere, Icarus, 1994, vol. 111, pp. 124–150. https://doi.org/10.1006/icar.1994.1137

    Article  ADS  Google Scholar 

  50. Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A., Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, J. Geophys. Res., 2014, vol. 119, pp. 1479–1495. https://doi.org/10.1002/2013JE004550

    Article  Google Scholar 

  51. Perminov, V.I., Semenov, A.I., Medvedeva, I.N., and Pertsev, N.N., Temperature variability in the mesopause region according to hydroxyl-emission observations at midlatitudes, Geomagn. Aeron., 2014, vol. 54, no. 2, pp. 230–239. https://doi.org/10.1134/S0016793214020157

    Article  ADS  Google Scholar 

  52. Perminov, V.I., Pertsev, N.N., Dalin, P.A., Zheleznov, Yu.A., Sukhodoev, V.A., and Orekhov, M.D., Seasonal and long-term changes in the intensity of O2(b1Σ) and OH(X2Π) airglow in the mesopause region, Geomagn. Aeron., 2021, vol. 61, pp. 589–599. https://doi.org/10.1134/S0016793221040113

    Article  ADS  Google Scholar 

  53. Pertsev, N. and Perminov, V., Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 2008, vol. 26, pp. 1049–1056. https://doi.org/10.5194/angeo-26-1049-2008

    Article  ADS  Google Scholar 

  54. Pertsev, N.N., Andreyev, A.B., Merzlyakov, E.G., and Perminov, V.I., Mesosphere-thermosphere manifestations of stratospheric warmings: Joint use of satellite and ground-based measurements, Current Problems in Remote Sensing of the Earth from Space, 2013, vol. 10. no. 1, pp. 93–100. http://jr.rse.cosmos.ru/article.aspx?id=1154&lang=eng.

  55. Piccioni, G., Drossart, P., Zasova, L., Migliorini, A., Gérard, J.-C., Mills, F.P., Shakun, A., García Muñoz, A., Ignatiev, N., Grassi, D., et al., The VIRTIS-Venus Express technical team. First detection of hydroxyl in the atmosphere of Venus, Astron. Astrophys., 2008, vol. 483, pp. L29–L33. https://doi.org/10.1051/0004-6361:200809761

    Article  ADS  Google Scholar 

  56. Popov, A.A., Gavrilov, N.M., Andreev, A.B., and Pogoreltsev, A.I., Interannual dynamics in intensity of mesoscale hydroxyl nightglow variations over Almaty, Solar-Terr. Phys., 2018, vol. 4, no. 2, pp. 63–68. https://doi.org/10.12737/stp-42201810

    Article  Google Scholar 

  57. Popov, A.A., Gavrilov, N.M., Perminov, V.I., Pertsev, N.N., and Medvedeva, I.V., Multi-year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory and Zvenigorod, J. Atmos. Sol.-Terr. Phys., 2020, vol. 205, pp. 1–8. https://doi.org/10.1016/j.jastp.2020.105311

    Article  Google Scholar 

  58. Reisin, E., Scheer, J., Dyrland, M.E., Sigernes, F., Deehr, C.S., Schmidt, C., Hoppner, K., Bittner, M., Ammosov, P.P., Gavrilyeva, G.A., et al., Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC), J. Atmos. Sol.-Terr. Phys., 2014, vol. 119, pp. 71–82. https://doi.org/10.1016/j.jastp.2014.07.002

    Article  ADS  Google Scholar 

  59. Russell, J.P., Ward, W.E., Lowe, R.P., Roble, R.G., Shepherd, G.G., and Solheim, B., Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time-latitude dependence, J. Geophys. Res., 2005, vol. 110, p. D15305. https://doi.org/10.1029/2004JD005570

    Article  ADS  Google Scholar 

  60. Shaposhnikov, D.S., Medvedev, A.S., Rodin, A.V., and Hartog, P., Seasonal water “pump” in theatmosphere of Mars: Vertical transport to the thermosphere, Geophys. Res. Lett., 2019, vol. 46, pp. 4161–4169. https://doi.org/10.1029/2019GL082839

    Article  ADS  Google Scholar 

  61. Shefov, N.N., Hydroxyl emission of the upper atmosphere. I, Planet. Space Sci., 1969, vol. 17, pp. 797–813. https://doi.org/10.1016/0032-0633(69)90089-0

    Article  ADS  Google Scholar 

  62. Shepherd, M.G., Meek, C.E., Hocking, W.K., Hall, C.M., Partamies, N., Sigernes, F., Manson, A.H., and Ward, W.E., Multi-instrument study of the mesosphere-lower thermosphere dynamics at 80° N during the major SSW in January 2019, J. Atmos. Sol.-Terr. Phys., 2020, vol. 210, p. 105427. https://doi.org/10.1016/j.jastp.2020.105427

    Article  Google Scholar 

  63. Sonnemann, G.R., Hartogh, P., Berger, U., and Grygalashvyly, M., Hydroxyl layer: Trend of number density and intra-annual variability, Ann. Geophys., 2015, vol. 33, pp. 749–767. https://doi.org/10.5194/angeo-33-749-2015

    Article  ADS  Google Scholar 

  64. Soret, L., Gérard, J.-C., Piccioni, G., and Drossart, P., Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express, Geophys. Res. Lett., 2010, vol. 37, p. L06805. https://doi.org/10.1029/2010GL042377

    Article  ADS  Google Scholar 

  65. Soret, L., Gérard, J.-C., Piccioni, G., and Drossart, P., The OH Venus nightglow spectrum: Intensity and vibrational composition from VIRTIS Venus Express observations, Planet. Space Sci., 2012, vol. 73, pp. 387–396. https://doi.org/10.1016/j.pss.2012.07.027

    Article  ADS  Google Scholar 

  66. Swenson, G.R. and Gardner, C.S., Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves, J. Geophys. Res., 1998, vol. 103, pp. 6271–6294. https://doi.org/10.1029/97JD02985

    Article  ADS  Google Scholar 

  67. Takahashi, H. and Batista, P.P., Simultaneous measurements of OH (9.4), (8.3), (7.2), 6.2), and (5.1) bands in the airglow, J. Geophys. Res., 1981, vol. 86, pp. 5632–5642. https://doi.org/10.1029/JA086iA07p05632

    Article  ADS  Google Scholar 

  68. Turnbull, D.N. and Lowe, R.P., Vibrational population distribution in the hydroxyl night airglow, Can. J. Phys., 1983, vol. 61, pp. 244–250. https://doi.org/10.1139/p83-033

    Article  ADS  Google Scholar 

  69. Wiens, R.H. and Weill, G.M., Diurnal, annual and solar cycle variations of hydroxyl and sodium nightglow intensities in the Europe–Africa sector, Planet. Space Sci., 1973, vol. 21, pp. 1011–1027.

    Article  ADS  Google Scholar 

  70. Xu, J., Smith, A.K., Jiang, G., Gao, H., Wei, Y., Mlynczak, M.G., and Russell, J.M. III, Strong longitudinal variations in the OH nightglow, Geophys. Res. Lett., 2010, vol. 37, p. L21801. https://doi.org/10.1029/2010GL043972

    Article  ADS  Google Scholar 

  71. Xu, J., Gao, H., Smith, A.K., and Zhu, Y., Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region, J. Geophys. Res., 2012, vol. 117, p. D02301. https://doi.org/10.1029/2011JD016342

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the referees for very helpful and constructive comments on improving this paper.

The MCD data are available at http://www-mars.lmd.jussieu.fr/. The calculation results are published and available at https://doi.org/10.5281/zenodo.5941499.

Funding

This study was partially supported by the Russian Science Foundation grant no. 20-72-00110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Shaposhnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikov, D.S., Grigalashvili, M., Medvedev, A.S. et al. Analytical Approximations of the Characteristics of Nighttime Hydroxyl on Mars and Intra-Annual Variations. Sol Syst Res 57, 1–13 (2023). https://doi.org/10.1134/S0038094623010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623010057

Keywords:

Navigation