Skip to main content
Log in

Structure and mechanical properties of iron subjected to surface severe plastic deformation by attrition: II. Mechanical properties of nano- and submicrocrystalline iron

  • Physical Foundations of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Depth-sensing indentation is used to study the effect of grain refinement to submicro- and nanograins on the mechanical properties (hardness, plasticity, Young’s modulus) of armco iron subjected to severe plastic deformation by attrition in argon. In contrast to fcc metals, where the hardness increases and the plasticity decreases as the grain size decreases to 20 nm, the hardness of bcc iron decreases from 5.8 to 3.7 GPa and plasticity δ A increases from 0.82 to 0.87 as the grain size decreases from 50 to 20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  2. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (UrO RAN, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  3. R. A. Andrievskii and A. M. Glezer, “Size Effects in Nanocrystalline Materials: I. Structure Characteristics, Thermodynamics, Phase Equilibria, and Transport Phenomena,” Fiz. Met. Metalloved. 88(1), 50–73 (1999) [Phys. Met. Metallogr. 88 (1), 45–66 (1999)]; “II. Mechanical and Physical Properties,” Fiz. Met. Metalloved. 89 (1), 91–112 (2000) [Phys. Met. Metallogr. 89 (1), 83–104 (2000)].

    CAS  Google Scholar 

  4. H. Van Swygenhoven and J. R. Weertman, “Deformation in Nanocrystalline Metals,” Materialstoday 9(5), 24–31 (2006).

    Google Scholar 

  5. K. S. Kumar, H. Van Swygenhoven, S. Suresh, “Mechanical Behavior of Nanocrystalline Metals and Alloys,” Acta Materialia 51, 5743–5774 (2003).

    Article  CAS  Google Scholar 

  6. V. A. Pozdnyakov and A. M. Glezer, “Structural Mechanisms of Plastic Deformation of Nanocrystalline Materials,” Fiz. Tverd. Tela 44(4) 705–710 (2002) [Phys. Solid State 44 (4), 600–605 (2002)].

    Google Scholar 

  7. N. I. Noskova, “Structural Features and Mechanisms of Deformation of Nanocrystalline Materials,” J. Phys. Metals and Metallography 94(Supplement), S119–S130 (2002).

    Google Scholar 

  8. G. A. Malygin, “Violation of the Hall-Petch Law in Micro- and Nanocrystalline Materials,” Fiz. Tverd. Tela 37(8), 2281–2292 (1995).

    CAS  Google Scholar 

  9. V. A. Pozdnyakov, “Mechanisms of Plastic Deformation and the Anomalies of the Hall-Petch Dependence in Metallic Nanocrystalline Materials,” Fiz. Met. Metalloved. 96(1), 114–128 (2003) [Phys. Met. Metallogr. 96, 105–119 (2003)].

    CAS  Google Scholar 

  10. A. M. Glezer, “Strength and Plasticity of Nanocrystals,” in Proceedings of the Ist International Conference on Deformation and Fracture of Materials, Moscow, Russia (Moscow, 2006), pp. 14–16.

  11. M. Yu. Gutkin and I. A. Ovid’ko, Defects and Plasticity Mechanisms in Nanostructured and Noncrystalline Materials (Yanus, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  12. G. Palumbo, U. Erb, and K. T. Aust, “Triple Line Dislocation Effects on the Mechanical Behavior of Materials,” Scr. Metall. Mater. 24, 2347–2350 (1990).

    Article  CAS  Google Scholar 

  13. R. Z. Valiev and R. Sh. Musalimov, “High-Resolution Transmission Electron Microscopy of Nanocrystalline Materials,” Fiz. Met. Metalloved. 78(6), 114–121 (1994) [Phys. Met. Metallogr. 78 (6) 666–670 (1994)].

    Google Scholar 

  14. R. Z. Valiev and R. K. Islamgaliev, “Structure and Mechanical Behavior of Ultrafine-Grained Metals and Alloys Subjected to Intense Plastic Deformation,” Fiz. Met. Metalloved. 85(3), 161–177 (1998) [Phys. Met. Metallogr. 85 (3), 367–377 (1998)].

    CAS  Google Scholar 

  15. Z. Horita, D. Smith, M. Furakawa, et al., “An Investigation of Grain Boundaries in Submicrometer-Grained Al-Mg Solid Solution Alloys Using High-Resolution Electron Microscopy,” J. Mater. Res. 11(8), 1880–1890 (1996).

    Article  CAS  ADS  Google Scholar 

  16. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformed Nanostructures. Vol. I. Nanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  17. A. I. Yurkova, A. V. Belotskii, Yu. V. Milman, and A. V. Byakova, “Nanostructure Formation on the Iron Surface during Attrition,” Nanofizika, Nanosistemy, Nanomaterialy 2(2), 633–644 (2004).

    CAS  Google Scholar 

  18. A. I. Yurkova, Yu. V. Milman, and A. V. Byakova, “Structure and Mechanical Properties of Iron after Surface Severe Plastic Deformation by Attrition: I. Structure Formation,” Deformatsiya Razrushenie Materialov, No. 1, 2–12 (2009).

  19. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res. 7(6), 1564–1583 (1992).

    Article  CAS  ADS  Google Scholar 

  20. D. Tabor, The Hardness of Metals (Clarendon, Oxford, 2000).

    Google Scholar 

  21. Int. Standard ISO 14577-1-2002 (E).

  22. Yu. V. Milman, B. A. Galanov, and S. T. Chugunova, “Plasticity Characteristics Obtained through Hardness Measurement,” Acta Metal. Mater. 41(9), 2523–2532 (1993).

    Article  CAS  Google Scholar 

  23. Yu. V. Milman, S. T. Chugunova, and I. V. Goncharova, “Plasticity Characteristic Obtained by Indentation Technique for Crystalline and Noncrystalline Materials in Wide Temperature Range,” High Temperature Materials and Processes 25(1–2), 39–46 (2006).

    CAS  Google Scholar 

  24. A. Byakova, Yu. V. Milman, and A. Vlasov, “High Performance Ceramic Coatings for Cutting Tool-Perspective in Improvement of Coating Mechanical Properties,” in Proceedings of the 8th CIRP iNternational Workshop on Modeling of Machining Operations, Chemnitz, Germany (Chemnitz, 2005), pp. 559–568.

  25. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Handbook (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  26. Yu. V. Milman, “Plasticity Characteristic Obtained by Indentation,” J. Phys. D: Appl. Phys. 41, 1–9 (2008).

    Article  MathSciNet  Google Scholar 

  27. Yu. Milman, S. Dub, and A. Golubenko, “Plasticity Characteristic Obtained through Instrumental Indentation,” Mater. Res. Soc. Symp. Proc. 1049, 123–128 (2008).

    Google Scholar 

  28. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystalline Materials (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  29. V. I. Trefilov, Yu. V. Milman, and S. A. Firstov, Physical Foundations of the Strength of Refractory Materials (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  30. T. Ungar, H. Mughraby, D. Könnpagel, and M. Wilkens, “Line-Broadening Study of the Dislocation Cell Structure in Deformed [001]-Oriented Copper Single Crystals,” Acta Metall. 32(3), 333–342 (1984).

    Article  CAS  Google Scholar 

  31. H. Mughraby, “Dislocation Wall and Cell Structures and Long-Range Internal Stresses in Deformed Metal Crystals,” Acta Metall. 31, 1367–1379 (1983).

    Article  Google Scholar 

  32. S. Cheng, E. Ma, M. Y. Wang, et al., “Tensile Properties of In Situ Consolidated Nanocrystalline Cu,” Acta Materialia 53, 1521–1533 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yurkova.

Additional information

Original Russian Text © A.I. Yurkova, Yu.V. Milman, A.V. Byakova, 2009, published in Deformatsiya i Razrushenie Materialov, 2009, No. 2, pp. 2–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurkova, A.I., Milman, Y.V. & Byakova, A.V. Structure and mechanical properties of iron subjected to surface severe plastic deformation by attrition: II. Mechanical properties of nano- and submicrocrystalline iron. Russ. Metall. 2010, 258–263 (2010). https://doi.org/10.1134/S0036029510040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029510040026

Keywords

Navigation