Skip to main content
Log in

Theoretical study on the interactions between the lignite monomer and water molecules

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum chemical calculations have been performed by using hybrid meta functional (M06-2X) to describe the hydrogen bonding interactions between the lignite monomer and water molecules. The characteristic and stability of water clusters in lignite monomer-water complexes were investigated and the solvent effects on geometries and hydrogen-bond energies were analyzed. The results indicated that the total hydrogen-bond energy gradually enhanced with increase of the number of water molecule because of hydrogen bonding cooperative interactions. The different features of water cluster were observed in the lignite monomer-water mixture. The significant changes in water clusters were not observed compared to the structures in gas phase, and the interaction energies decreased substantially. The length of hydrogen-bond was averaged due to solvent effect. The conclusion was consistent with the infrared analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thielemann, S. Schmidt, and J. P. Gerling, Int. J. Coal. Geol. 72, 1 (2007).

    Article  CAS  Google Scholar 

  2. K. K. Bhattacharyya, Fuel 50, 367 (1971).

    Article  CAS  Google Scholar 

  3. J. W. Larsen, T. K. Green, and J. Kovac, J. Org. Chem. 50, 4729 (1985).

    Article  CAS  Google Scholar 

  4. J. W. Larsen and A. J. Baskar, Energy Fuels 1, 230 (1987).

    Article  CAS  Google Scholar 

  5. P. C. Painter, M. Sobkowiak, and J. Youtcheff, Fuel 66, 973 (1987).

    Article  CAS  Google Scholar 

  6. E. M. Y. Quinga and J. W. Larsen, Energy Fuels 1, 300 (1987).

    Article  CAS  Google Scholar 

  7. M. Miyake and L. M. Stock, Energy Fuels 2, 815 (1988).

    Article  CAS  Google Scholar 

  8. M. Nishioka, L. A. Gebhard, and B. G. Silbernagel, Fuel 70, 341 (1991).

    Article  CAS  Google Scholar 

  9. H. T. Liu, T. Ishizuka, T. Takanohashi, and M. Iino, Energy Fuels 7, 1108 (1993).

    Article  CAS  Google Scholar 

  10. K. Miura, K. Mae, W. Li, T. Kusakawa, F. Morozumi, and A. Kumano, Energy Fuels 15, 599 (2001).

    Article  CAS  Google Scholar 

  11. L. J. Lynch, W. A. Barton, and D. S. Webster, in Proceedings of the 16th Biennial Low-Rank Fuels Symposium, Grand Forks, North Dakota, 1991, pp. 187.

  12. K. Norinaga, H. Kumagai, J. I. Hayashi, and T. Chiba, Energy Fuels 12, 574 (1998).

    Article  CAS  Google Scholar 

  13. H. Kumagai, T. Chiba, and K. Nakamura, Am. Chem. Soc. Div. Fuel Chem. 44, 567 (1999).

    Google Scholar 

  14. T. Vu, A. Chaffee, and I. Yarovsky, Mol. Simul. 28, 981 (2002).

    Article  CAS  Google Scholar 

  15. Z. Q. Zhang, Mol. Phys. 109, 447 (2011).

    Article  CAS  Google Scholar 

  16. S. Maheshwary, N. Patel, N. Sathyamurthy, A. D. Kulkarni, and S. R. Gadre, J. Phys. Chem. A 105, 10525 (2001).

    Article  CAS  Google Scholar 

  17. B. Gomez-Zaleta, R. Gomez-Balderas, and J. Hernandez-Trujillo, Phys. Chem. Chem. Phys. 12, 4783 (2010).

    Article  CAS  Google Scholar 

  18. J. K. Gregory and D. C. Clary, J. Phys. Chem. 100, 18014 (1996).

    Article  CAS  Google Scholar 

  19. R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, J. Phys. Chem. A 109, 843 (2005).

    Article  CAS  Google Scholar 

  20. M. Markic and R. F. Sachsenhofer, Int. J. Coal. Geol. 33, 229 (1997).

    Article  CAS  Google Scholar 

  21. J. P. Mathews, A. C. T. van Duin, and A. L. Chaffee, Fuel. Process. Technol. 92, 718 (2011).

    Article  CAS  Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. A.02 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  23. Y. Zhao and D. Truhlar, J. Chem. Phys. 125, 194101 (2006).

    Article  Google Scholar 

  24. Y. Zhao and D. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  25. E. G. Hohenstein, S. T. Chill, and C. D. Sherrill, J. Chem. Theory. Comput. 4, 1996 (2008).

    Article  CAS  Google Scholar 

  26. C. Michaux, J. Wouters, E. A. Perpete, and D. Jacquemin, J. Phys. Chem. B 112, 2430 (2008).

    Article  CAS  Google Scholar 

  27. T. Nakabayashi, H. Sato, F. Hirata, and N. Nishi, J. Phys. Chem. A 105, 245 (2000).

    Article  Google Scholar 

  28. A. J. Gotch and T. S. Zwier, J. Chem. Phys. 96, 3388 (1992).

    Article  CAS  Google Scholar 

  29. M. P. Hodges, A. J. Stone, and S. S. Xantheas, J. Phys. Chem. A 101, 9163 (1997).

    Article  CAS  Google Scholar 

  30. E. T. S. Ida M, B. Nielsen, and C. L. Janssen, J. Chem. Phys. 110, 9435 (1999).

    Article  Google Scholar 

  31. M. S. Deshpande, A. S. Kumbhar, and C. Nather, Dalton Trans. 39, 9146 (2010).

    Article  CAS  Google Scholar 

  32. E. Honegger and S. Leutwyler, J. Chem. Phys. 88, 2582 (1988).

    Article  CAS  Google Scholar 

  33. S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).

    Article  CAS  Google Scholar 

  34. J. F. Pérez, C. Z. Hadad, and A. Restrepo, Int. J. Quantum. Chem. 108, 1653 (2008).

    Article  Google Scholar 

  35. F. Ramírez, C. Z. Hadad, D. Guerra, J. David, and A. Restrepo, Chem. Phys. Lett. 507, 229 (2011).

    Article  Google Scholar 

  36. K. Kim, K. D. Jordan, and T. S. Zwier, J. Am. Chem. Soc. 116, 11568 (1994).

    Article  CAS  Google Scholar 

  37. M. D. Tissandier, S. J. Singer, and J. V. Coe, J. Phys. Chem. A 104, 752 (2000).

    Article  CAS  Google Scholar 

  38. G. Hincapié, N. Acelas, M. Castannó, J. David, and A. Restrepo, J. Phys. Chem. A 114, 7809 (2010).

    Article  Google Scholar 

  39. S. T. Scheiner, Hydrogen Bonding, A Theoretical Perspective (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  40. A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, and H. Lischka, J. Phys. Chem. A 106, 1862 (2002).

    Article  CAS  Google Scholar 

  41. G. Q. Liu, H. F. Wang, and W. Z. Li, J. Mol. Struct. Theochem. 772, 103 (2006).

    Article  CAS  Google Scholar 

  42. L. Selvam, F. F. Chen, and F. Wang, Chem. Phys. Lett. 500, 327 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, HY., Wang, XH., Feng, L. et al. Theoretical study on the interactions between the lignite monomer and water molecules. Russ. J. Phys. Chem. 89, 1605–1613 (2015). https://doi.org/10.1134/S0036024415090137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415090137

Keyword

Navigation