Skip to main content
Log in

State-interacting spin-orbit configuration interaction method for J-resolved anisotropic static dipole polarizabilities: Application to Al, Ga, In, and Tl atoms

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The state-interacting spin-orbit (SO) configuration interaction (CI) method, which uses the non-relativistic CI wave functions as the basis of the total SO Hamiltonian matrix, is combined with the finite-field approach and applied to J-resolved anisotropic static dipole polarizabilities of the third-group atoms from Al to Tl. Comparison with available data reveals excellent performance of the method for atoms up to the fifth period (In), especially if the scalar relativitic and the high-level correlation corrections are included. The method performs worse for 6s 26p Tl atom, most likely due to growing effect of the second-order SO coupling. Refined values of all the scalar and the tensor ground-state non-relativistic and J-resolved polarizabilities and, whenever possible, excited-state polarizabilities, are recommended based on the calculations performed and thorough analysis of the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Univ., Oxford, 1932).

    Google Scholar 

  2. A. Dalgarno, Adv. Phys. 11, 281 (1962).

    Article  CAS  Google Scholar 

  3. R. R. Teachout and R. T. Pack, At. Data 3, 195 (1971).

    Article  Google Scholar 

  4. T. M. Miller and B. Bederson, Adv. At. Mol. Phys. 13, 1 (1977).

    Article  CAS  Google Scholar 

  5. T. M. Miller and B. Bederson, Adv. At. Mol. Opt. Phys. 25, 37 (1988).

    CAS  Google Scholar 

  6. T. M. Miller, in CRC Hand of Chemistry and Physics, Ed. by D. R. Lide (CRC, Boca Raton, FL, 2002), p. 202.

    Google Scholar 

  7. K. D. Bonin and V. V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters (World Sci., Singapore, 1997).

    Book  Google Scholar 

  8. W. A. van Wijngaarden, Adv. At. Mol. Opt. Phys. 36, 141 (1996).

    Article  Google Scholar 

  9. W. A. van Wijngaarden, At. Phys. 16, 305 (1999).

    Google Scholar 

  10. A. J. Thakkar and C. Lupinetti, in Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters, Ed. by G. Maroulis (Imperial College, London, 2006), p. 505.

    Chapter  Google Scholar 

  11. P. Schwerdtfeger, in Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules, and Clusters, Ed. by G. Maroulis (Imperial College, London, 2006), p. 1.

    Chapter  Google Scholar 

  12. J. R. P. Angel and P. G. H. Sandars, Proc. R. Phys. Soc. London A 305, 125 (1968).

    Article  CAS  Google Scholar 

  13. T. Fleig and A. J. Sadlej, Phys. Rev. A 65, 032506 (2002).

    Article  Google Scholar 

  14. T. Fleig, Phys. Rev. A 72, 052506 (2005).

    Article  Google Scholar 

  15. J. P. Desclaux, L. Laaksonen, and P. Pyykk At. Mol. Phys. 14, 419 (1981).

    Article  CAS  Google Scholar 

  16. L. T. Sin Fai Lam, J. Phys. B: At. Mol. Phys. 14, 3543 (1981).

    Article  CAS  Google Scholar 

  17. C. Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko, Phys. Rev. A 70, 032722 (2004).

    Article  Google Scholar 

  18. C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S. Schäfer, and R. Schäfer, Phys. Rev. A 78, 052506 (2008).

    Article  Google Scholar 

  19. V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, J. Chem. Phys. 128, 024707 (2008).

    Article  CAS  Google Scholar 

  20. V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, J. Phys. Chem. A 112, 13712 (2008).

    Article  CAS  Google Scholar 

  21. A. Khadavi, A. Lurio, and W. Harper, Phys. Rev. 167, 128 (1968).

    Article  Google Scholar 

  22. N. J. Martin, P. G. H. Sandars, and G. K. Woodgate, Proc. R. Phys. Soc. London A 305, 139 (1968).

    Article  CAS  Google Scholar 

  23. F. R. Petersen, Bull. Am. Phys. Soc. 14, 833 (1969).

    Google Scholar 

  24. F. R. Petersen, H. C. Palmer, and J. H. Shirley, Bull. Am. Phys. Soc. 13, 1674 (1968).

    Google Scholar 

  25. F. R. Petersen, Bull. Am. Phys. Soc. 15, 1304 (1970).

    Google Scholar 

  26. C. Krenn, W. Scherf, O. Khait, M. Musso, and L. Windholz, Z. Phys. D 41, 229 (1997).

    Article  CAS  Google Scholar 

  27. A. Burning, M. Schweizer, H.-J. Werner, P. J. Knowles, and P. Palmieri, Mol. Phys. 98, 1823 (2000).

    Article  Google Scholar 

  28. W. G. Richards, H. P. Trivedi, and D. L. Cooper, Spin Orbit Coupling in Molecules (Clarendon, Oxford, 1981).

    Google Scholar 

  29. A. Hess, C. M. Marian, and S. D. Peyerimhoff, Modern Electronic Structure Theory (World Sci., Singapore, 1995).

    Google Scholar 

  30. P. Milani, I. Moullet, and W. A. de Heer, Phys. Rev. A 42, 5150 (1990).

    Article  CAS  Google Scholar 

  31. G. S. Sarkisov, I. L. Beigman, V. P. Shevelko, and K. W. Struve, Phys. Rev. A 73, 042501 (2006).

    Article  Google Scholar 

  32. T. P. Guella, T. M. Miller, B. Bederson, J. A. D. Stockdale, and B. Jaduszliwer, Phys. Rev. A 29, 2977 (1984).

    Article  CAS  Google Scholar 

  33. H. Gould, Phys. Rev. A 14, 922 (1976).

    Article  CAS  Google Scholar 

  34. V. V. Flambaum and O. P. Sushkov, J. Quant. Spectr. Radiat. Trans. 20, 569 (1978).

    Article  CAS  Google Scholar 

  35. Yu. V. Skovpen and V. V. Flambaum, Opt. Spectrosc. 45, 731 (1978).

    Google Scholar 

  36. M. G. Kozlov, S. G. Porsev, and W. R. Johnson, Phys. Rev. A 64, 052107 (2001).

    Article  Google Scholar 

  37. M. S. Safronova, W. R. Johnson, U. I. Safronova, and T. E. Cowan, Phys. Rev. A 74, 022504 (2006).

    Article  Google Scholar 

  38. V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 80, 062509 (2009).

    Article  Google Scholar 

  39. X. Chu and A. Dalgarno, J. Chem. Phys. 121, 4083 (2004).

    Article  CAS  Google Scholar 

  40. H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, et al., MOLPRO Version 2006.2, a Package of Ab Initio Programs (Cardiff, UK, 2006).

  41. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988); P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).

    Article  CAS  Google Scholar 

  42. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985), P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).

    Article  CAS  Google Scholar 

  43. H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, S34 (1965).

    Article  CAS  Google Scholar 

  44. J. A. Pople, J. W. McIver, Jr., and N. S. Ostlund, J. Chem. Phys. 49, 2961 (1968).

    Google Scholar 

  45. P. Pyykkö and H. Stoll, in RSC Specialist Periodical Reports: Chemical Modelling, Applications and Theory, Ed. by A. Hinchliffe (RSC, London, 2000), Vol. 1, p. 239.

    Google Scholar 

  46. M. Dolg, in Modern Methods and Algorithms of Quantum Chemistry, Ed. by J. Grotendorst (J. von Neumann Inst. for Computing, Jülich, 2000), Vol. 3, p. 507.

    Google Scholar 

  47. M. Reiher and A. Wolf, J. Chem. Phys. 121, 2037, 10945 (2004).

    Article  CAS  Google Scholar 

  48. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993).

    Article  CAS  Google Scholar 

  49. A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, Jr., J. Chem. Phys. 110, 7667 (1999).

    Article  CAS  Google Scholar 

  50. K. A. Peterson, J. Chem. Phys. 119, 11099 (2003).

    Article  CAS  Google Scholar 

  51. P. Schwerdtfeger, M. Dolg, W. H. E. Schwartz, G. A. Bowmaker, and P. D. W. Boyd, J. Chem. Phys. 91, 1762 (1989).

    Article  CAS  Google Scholar 

  52. B. Metz, H. Stoll, and M. Dolg, J. Chem. Phys. 113, 2563 (2000).

    Article  CAS  Google Scholar 

  53. B. Metz, M. Schweizer, H. Stoll, M. Dolg, and W. Liu, Theor. Chim. Acc. 104, 22 (2000).

    CAS  Google Scholar 

  54. B. O. Roos, R. Lindh, and P.-Å. Malmqvist, V. Widmark, J. Phys. Chem. A 108, 2851 (2004).

    Article  CAS  Google Scholar 

  55. S. R. Langhoff and E. R. Davidson, Int. J. Quant. Chem. 8, 61 (1974).

    Article  CAS  Google Scholar 

  56. J. Stiehler and J. Hinze, J. Phys. B 28, 4055 (1995).

    Article  CAS  Google Scholar 

  57. C. Lupinetti and A. J. Thakkar, J. Chem. Phys. 122, 044301 (2001).

    Article  Google Scholar 

  58. P. Fuentealba, Chem. Phys. Lett. 397, 459 (2004).

    Article  CAS  Google Scholar 

  59. Yu. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kamida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, NIST Atomic Spectra Database (Version 3.1.2), http://physics.nist.gov/asd3 (NIST, Gaithersburg, MD, 2007).

    Google Scholar 

  60. S. C. Doret, P. D. Friedberg, A. J. Speck, D. S. Richardson, and P. K. Majumder, Phys. Rev. A 66, 052504 (2002).

    Article  Google Scholar 

  61. T. R. Fowler and J. Yellin, Phys. Rev. A 1, 1006 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Buchachenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchachenko, A.A. State-interacting spin-orbit configuration interaction method for J-resolved anisotropic static dipole polarizabilities: Application to Al, Ga, In, and Tl atoms. Russ. J. Phys. Chem. 84, 2325–2333 (2010). https://doi.org/10.1134/S0036024410130200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410130200

Keywords

Navigation