Skip to main content
Log in

Theoretical studies of the geometries of H2GeLiCl and its insertion reaction with R-H (R = F, OH, NH2)

  • Problems of Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry Aims and scope Submit manuscript

Abstract

The geometries and insertion reactions of germylene derivative H2GeLiCl with R-H (R = F, OH, NH2) have been investigated at the B3LYP/6-311+G* level of theory. The potential barriers of the three reactions are 93.5, 151.3, and 194.1 kJ/mol, including the zero-point vibration energy corrections, respectively. The mechanisms of all the three reactions are identical, i.e., an intermediate has been located during the insertion reaction. The intermediate could dissociate to substituted germylene and LiCl as a barrier process. Correspondingly, the reaction free energies for the three reactions are −7.4, 49.9, and 64.4 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Satge, M. Massil, and P. Riviere, J Organoment. Chem. 56, 1 (1973).

    Article  CAS  Google Scholar 

  2. U. N. Alexander, N. A. Trout, and K. D. King, Chem. Phys. Lett. 299, 291 (1999).

    Article  CAS  Google Scholar 

  3. M. D. Su and S. Y. Chu, Tetrahedron Lett. 42, 4371 (1999).

    Article  Google Scholar 

  4. J. Satge, Pure Appl. Chem. 56, 137 (1984).

    CAS  Google Scholar 

  5. S. Shoda, S. Iwata, and K. Yajima, Tetrahedron 53, 15281 (1997).

    Article  CAS  Google Scholar 

  6. N. Tokitoh, K. Kishikawa, and R. Okazaki, Polyhedron 21, 563 (2002).

    Article  CAS  Google Scholar 

  7. B. Riviere and D. Monique, J Organoment. Chem. 595, 153 (2000).

    Article  Google Scholar 

  8. E. Broclawik and A. Bocho-Janiszewska, THEOCHEM 531, 241 (2000).

    Article  CAS  Google Scholar 

  9. T. Iwamoto, H. Masuda, and S. Ishida, J. Organoment. Chem. 689, 1337 (2004).

    Article  CAS  Google Scholar 

  10. M. Z. Kassaee, M. Ghambarian, and S. M. Musavi, J Organoment. Chem. 690, 4692 (2005).

    Article  CAS  Google Scholar 

  11. W. A. Hermann, R. S. Grev, and H. F. Schaefer, Angew. Chem. 104, 1489 (1992).

    Google Scholar 

  12. H. Ohgaki and W. Ando, J Organoment. Chem. 521, 387 (1996).

    Article  CAS  Google Scholar 

  13. J. Barrau and G. Rima, Coord. Chem. Rev. 178, 593 (1998).

    Article  Google Scholar 

  14. X. H. Lu, Y. X. Wang, and C. B. Liu, Chinese J. Chem. Phys. 4, 460 (1999).

    Google Scholar 

  15. U. N. Alexander, K. D. King, and W. D. Lawrance, Chem. Phys. Lett. 319, 529 (2000).

    Article  CAS  Google Scholar 

  16. R. Becerra and R. Walsh, J Organoment. Chem. 636, 49 (2001).

    Article  CAS  Google Scholar 

  17. Y. Y. Chu and M. D. Su, Chem. Phys. Lett. 394, 231 (2004).

    Article  CAS  Google Scholar 

  18. D. A. Horner, R. S. Grev, and H. F. Schaefer, J. Am. Chem. Soc. 114, 2093 (1992).

    Article  CAS  Google Scholar 

  19. X. H. Lu, Y. X. Wang, and C. B. Liu, Acta Chim. Simica 57, 1343 (1999).

    CAS  Google Scholar 

  20. S. Y. Feng and D. C. Feng, THEOCHEM 541, 171 (2001).

    Article  CAS  Google Scholar 

  21. M. J. Frisch et al., Gaussian 98 (Gaussian Inc., Pittsburgh, PA, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Li, P., Yang, X. et al. Theoretical studies of the geometries of H2GeLiCl and its insertion reaction with R-H (R = F, OH, NH2). Russ. J. Phys. Chem. 80 (Suppl 1), S107–S110 (2006). https://doi.org/10.1134/S0036024406130188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024406130188

Keywords

Navigation