Skip to main content
Log in

Ammonia Borane in Nanotubes: The Preference of Eclipsed Conformation

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The DFT PBE/3ζ modeling of conformational transformations of an ammonia borane molecule BH3 ← NH3 in model single-layer carbon nanotubes indicates an unusual shift of conformational equilibrium to the eclipsed form. In cluster, the В ← N coordination bond demonstrates a noticeable decrease in length and an increase in its order. The increasing diameter of nanoobject weakens the observed effects and shifts conformation equilibrium to the staggered conformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Niedenzu and J. W. Dawson, Boron-Nitrogen Compounds (Springer, Berlin/Heidelberg/New York, 1965; Moscow, Mir, 1968).

    Google Scholar 

  2. A. Staubitz, A. P. M. Robertson, and I. Manners, Chem. Rev. 110, 4079 (2010). doi 10.1021/cr100088b

    Article  CAS  PubMed  Google Scholar 

  3. V. M. Parvanov, G. K. Schenter, N. J. Hess, et al., Dalton Trans., No. 33, 4514 (2008). doi 10.1039/B718138H

    Article  CAS  Google Scholar 

  4. S. Xie, Y. Song, and Z. Liu, Can. J. Chem. 87, 1235 (2009). doi 10.1139/V09-114

    Article  CAS  Google Scholar 

  5. H. Umeyama and T. Matsuzaki, Chem. Pharm. Bull. 27, 3164 (1979). doi 10.1248/cpb.27.3164

    Article  CAS  Google Scholar 

  6. A. A. Fiorillo and J. M. Cabraith, J. Phys. Chem. A 108, 5126 (2004). doi 10.1021/jp049632o

    Article  CAS  Google Scholar 

  7. J. Demaison, J. Lievin, A. G. Csaszar, et al., J. Phys. Chem. A 112, 4477 (2008). doi 10.1021/jp710630j

    Article  CAS  PubMed  Google Scholar 

  8. Y. Mo, L. Song, W. Wu, and Q. Zhang, J. Am. Chem. Soc. 126, 3974 (2004). doi 10.1021/ja0397781

    Article  CAS  PubMed  Google Scholar 

  9. P. Su and H. Li, J. Chem. Phys. 131 (1), 014102 (2009). doi 10.1063/1.3159673

    Article  CAS  PubMed  Google Scholar 

  10. M. Parafiniuk and M. P. Mitoraj, J. Mol. Model. 20, 2272 (2014). doi 10.1007/s00894-014-2272-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L. R. Thorne, R. D. Suenram, and F. J. Lovas, J. Chem. Phys. 78, 167 (1983). doi 10.1063/1.444528

    Article  CAS  Google Scholar 

  12. S. Manzetti, Adv. Manuf. 1, 198 (2013). doi 10.1007/s40436-013-0030-5

    Article  Google Scholar 

  13. O. O. Adisa, B. J. Cox, and J. M. Hill, Micro Nano Lett. 5 (5), 291 (2010). doi 10.1049/mnl.2010.0075

    Article  CAS  Google Scholar 

  14. F. Zhang, X. Pan, Y. Hu, et al., PNAS 110, 14861 (2013). doi 10.1073/pnas.1306784110

    Article  PubMed  Google Scholar 

  15. A. N. Khlobystov, D. A. Britz, and G. A. D. Briggs, Acc. Chem. Res. 38, 901 (2005). doi 10.1021/ar040287v

    Article  CAS  PubMed  Google Scholar 

  16. D. A. Britz and A. N. Khlobystov, Chem. Soc. Rev. 35, 637 (2006). doi 10.1039/b507451g

    Article  CAS  PubMed  Google Scholar 

  17. M. D. Halls and H. B. Schlegel, J. Phys. Chem. B 106, 1921 (2002). doi 10.1021/jp0137165

    Article  CAS  Google Scholar 

  18. D. A. Britz, A. N. Khlobystov, K. Porfyrakis, et al., Chem. Commun., No. 1, 1039 (2005). doi 10.1039/B414247K

    Google Scholar 

  19. C. N. Ramachandran, D. D. Fazio, N. Sathyamurthy, et al., Chem. Phys. Lett. 473, 146 (2009). doi 10.1016/j.cplett.2009.03.068

    Article  CAS  Google Scholar 

  20. V. V. Kuznetsov, Russ. J. Org. Chem. 49, 313 (2013). doi 10.1134/S1070428013020231

    Article  CAS  Google Scholar 

  21. V. V. Kuznetsov, Russ. J. Org. Chem. 49, 1231 (2013). doi 10.1134/S107042801308023X

    Article  CAS  Google Scholar 

  22. V. V. Kuznetsov, Russ. J. Gen. Chem. 83, 2334 (2013). doi 10.1134/S1070363213100190

    Article  CAS  Google Scholar 

  23. V. V. Kuznetsov, Russ. J. Gen. Chem. 83, 1165 (2013). doi 10.1134/S1070363213060285

    Article  CAS  Google Scholar 

  24. V. V. Kuznetsov, Russ. J. Org. Chem. 50, 1534 (2014). doi 10.1134/S1070428014100200

    Article  CAS  Google Scholar 

  25. V. V. Kuznetsov, Russ. J. Gen. Chem. 83, 1623 (2013). doi 10.1134/S1070363213080264

    Article  CAS  Google Scholar 

  26. V. V. Kuznetsov, Russ. J. Gen. Chem. 83, 1455 (2013). doi 10.1134/S1070363213070268

    Article  CAS  Google Scholar 

  27. D. N. Laikov and Yu. A. Ustynyuk, Russ. Chem. Bull. Int. Ed. 54, 820 (2005). doi 10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  28. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997). doi 10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  29. HyperChem 8.0. https://doi.org/www.hyper.com

  30. R. F. Quijano-Quinones, M. Quesadas-Rojas, G. Cuevas, et al., Molecules 17, 4661 (2012). doi 10.3390/molecules17044661

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuznetsov.

Additional information

Original Russian Text © V.V. Kuznetsov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 8, pp. 1036–1042.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V. Ammonia Borane in Nanotubes: The Preference of Eclipsed Conformation. Russ. J. Inorg. Chem. 63, 1069–1075 (2018). https://doi.org/10.1134/S0036023618080120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618080120

Navigation