Skip to main content
Log in

Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanosized yttrium orthoferrite was obtained by the heat treatment of an X-ray amorphous precursor prepared by the glycine–nitrate combustion process in orthorhombic and hexagonal phases with average crystallite sizes of 27–33 nm and 6–11 nm, respectively. The processes controlling YFeO3 formation under the specified conditions were shown to be the decomposition of yttrium carbonate and yttrium oxycarbonate. The transition from the metastable hexagonal phase to the stable orthorhombic phase in YFeO3 was shown to occur when the hexagonal YFeO3 crystallites reach sizes of 15 ± 5 nm. The YFeO3 nanoparticle size distribution was analyzed to suggest a phase transition scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. D. Tretyakov, Russ. Chem. Rev. 72, 651 (2003).

    Article  CAS  Google Scholar 

  2. A. A. Rempel, Russ. Chem. Rev. 76, 435 (2007).

    Article  CAS  Google Scholar 

  3. Nanomaterials: Properties and Advanced Applications. Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2014). [in Russian].

  4. H. K. Kim, M. J. Hackett, J. Park, and T. Hyeon, Chem. Mater. 26, 59 (2014).

    Article  CAS  Google Scholar 

  5. X. Z. Guo, B. G. Ravi, P. S. Devi, et al., J. Magn. Magn. Mater. 295, 145 (2005).

    Article  CAS  Google Scholar 

  6. S. T. Aruna and A. S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12 (3–4), 44 (2008).

    Article  CAS  Google Scholar 

  7. C.-Y. Yin, M. Minakshi, D. E. Ralph, et al., J. Alloys Compd. 509, 9821 (2011).

    Article  CAS  Google Scholar 

  8. V. D. Zhuravlev, V. G. Vasiliev, E. V. Vladimirova, et al., Glass Phys. Chem. 36, 506 (2010).

    Article  CAS  Google Scholar 

  9. R. R. Kondakindi, R. Karan, and B. A. Peppley, Ceram. Int. 38, 449 (2012).

    Article  CAS  Google Scholar 

  10. A. A. Komlev and E. F. Vilezhaninov, Russ. J. Appl. Chem. 86, 1344 (2013).

    Article  CAS  Google Scholar 

  11. J. Lentmaier and S. Kemmler-Sack, Mater. Res. Bull. 33, 461 (1998).

    Article  CAS  Google Scholar 

  12. P. Tang, H. Chen, F. Cao, and G. Pan, Catal. Sci. Technol. 1, 1145 (2011).

    Article  CAS  Google Scholar 

  13. M. Markova-Velichkova, T. Lazarova, V. Tumbalev, et al., Chem. Engin. J 231, 236 (2013).

    Article  CAS  Google Scholar 

  14. A. T. Nguyen, I. Ya. Mittova, and O. V. Almjasheva, Russ. J. Appl. Chem. 82, 1915 (2009).

    Article  Google Scholar 

  15. A. T. Nguyen, I. Ya. Mittova, D. O. Solodukhin, et al., Russ. J. Inorg. Chem. 59, 40 (2014).

    Article  CAS  Google Scholar 

  16. K. T. Jacob, G. Rajitha, and N. Dasgupta, Ind. J. Eng. Mater. Sci. 19, 47 (2012).

    CAS  Google Scholar 

  17. Y. Zhang, J. Yang, J. Xu, et al., Mater. Lett. 81, 1 (2012).

    Article  CAS  Google Scholar 

  18. V. I. Popkov and O. V. Almjasheva, Russ. J. Appl. Chem. 87, 167 (2014).

    Article  CAS  Google Scholar 

  19. V. I. Popkov, O. V. Almjasheva, and V. V. Gusarov, Russ. J. Appl. Chem. 87, 1417 (2014).

    Article  CAS  Google Scholar 

  20. J. I. Goldstein, D. E. Newbury, P. Echlin, et al., Scanning Electron Microscopy and X-ray Microanalysis (Springer, New York, 2003).

    Book  Google Scholar 

  21. T. G. Fawcett, J. Faber, F. Needham, et al., Powder Diffr. 21 (02), 105 (2006).

    Article  CAS  Google Scholar 

  22. R. A. Young, The Rietveld Method (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  23. L. Lutterotti, S. Matthies, and H. R. Wenk, Int. Union Crystallogr. Comm. Powder Diffr. Newslett. 21, 14 (1999).

    Google Scholar 

  24. M. Leoni, P. Scardi, and R. Delhez, J. Appl. Crystallogr. 37, 629 (2004).

    Article  CAS  Google Scholar 

  25. L. B. Borovkova, E. S. Lukin, D. N. Poluboyarinov, and N. N. Snegireva, Refractories 12, 780 (1971).

    Article  Google Scholar 

  26. L. M. D’Assuncao, I. Giolito, and M. Ionashiro, Thermochim. Acta 137, 319 (1989).

    Article  Google Scholar 

  27. S. Mathur, M. Veith, R. Rapalaviciute, et al., Chem. Mater. 16, 1906 (2004).

    Article  CAS  Google Scholar 

  28. B. D. Stanley, M. M. Hirschmann, and A. C. Withers, Geochim. Cosmochim. Acta 129, 54 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Popkov.

Additional information

Original Russian Text © V.I. Popkov, O.V. Almjasheva, M.P. Schmidt, S.G. Izotova, V.V. Gusarov, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 10, pp. 1308–1314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, V.I., Almjasheva, O.V., Schmidt, M.P. et al. Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products. Russ. J. Inorg. Chem. 60, 1193–1198 (2015). https://doi.org/10.1134/S0036023615100162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615100162

Keywords

Navigation