Skip to main content
Log in

Tributary-Specific Contribution to a Lacustrine Mixed-Stock Fishery of Brown Trout Salmo trutta (Salmonidae) in a Diverse Sub-Arctic Watershed

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Mixed-stock fisheries which simultaneously cause mortality amongst several populations of a species of fish may occur where separate stocks partially or completely overlap in the geographic area of harvest. This study aims to analyze the population-of-origin of adult and subadult adfluvial lacustrine brown trout Salmo trutta, exploited in a mixed-stock fishery in Upper Tuloma Reservoir in Eastern Fennoscandia, using otolith microchemistry. To evaluate the origin of migratory brown trout captured in these mixed-stock harvest fisheries, we undertook otolith sampling of brown trout juveniles in fluvial spawning and rearing habitats in the reservoir watershed, including 13 natal tributaries across the catchment of the reservoir in both Russia and Finland. Harvested adult and subadult brown trout otoliths were sampled from the impoundment in the central area of the reservoir and we analyzed for stock-related character differences to compare with known populations, using trace element signatures, with fish from the mixed stock fishery. The assignments-of-origin in the mixed-stock fishery-harvest samples did not follow the known distribution of populations sampled from natal streams in the watershed. For example, brown trout from the largest tributary catchments of Lotta River and Nota River were less represented in the mixed-harvest sample, which was contradictory to their contribution to the overall spawning and rearing areas of the catchment. These results point towards the importance of maintaining the diversity of different spawning and rearing tributaries required for brown trout recruitment into mixed stock fisheries, and the potential of the existence of population structure of brown trout in the reservoir catchment. Our information suggests that it is important to develop conservation and management strategies for natal habitats in multiple streams utilized by adfluvial lacustrine brown trout populations inhabiting various catchments and that are harvested in mixed-stock fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aalto, J., Niemelä, E., Julkunen, M. and Erkinaro, J., Juvenile densities, growth and migration of brown trout (Salmo trutta L.) in the Rivers Luttojoki and Nuorttijoki, northern Finland, in Kalatutkimuksia–Fiskundersokningar, Helsinki: Fin. Game and Fish. Res. Institute, 1998, vol. 138, pp. 1–38.

    Google Scholar 

  2. Andersson, A., Jansson, E., Wennerström, L., et al., Complex genetic diversity patterns of cryptic, sympatric brown trout (Salmo trutta) populations in tiny mountain lakes, Conserv. Genet., 2017, vol. 18, pp. 1–15. https://doi.org/10.1007/s10592-017-0972-4

    Article  CAS  Google Scholar 

  3. Barnett-Johnson, R., Teel, D.J., and Casillas, E., Genetic and otolith isotopic markers identify salmon populations in the Columbia River at broad and fine geographic scales, Environ. Biol. Fishes, 2010, vol. 89, pp. 533–546. https://doi.org/10.1007/s10641-010-9662-5

    Article  Google Scholar 

  4. Beacham, T.D., Wallace, C., Jonsen, K., et al., Accurate estimation of conservation unit contribution to coho salmon mixed-stock fisheries in British Columbia, Canada, using direct DNA sequencing for single nucleotide polymorphisms, Can. J. Fish. Aquat., 2020, vol. 77, pp. 1302–1315.

    Article  Google Scholar 

  5. Bohlin, T., Pettersson, J., and Degerman, E., Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: Evidence for a migration cost, J. Anim. Ecol., 2001, vol. 70, pp. 112–121.

    Google Scholar 

  6. Bradbury, I.R., Hamilton, L.C., Rafferty, S., et al., Genetic evidence of local exploitation of Atlantic salmon in a coastal subsistence fishery in the Northwest Atlantic, Can. J. Fish. Aquat., 2014, vol. 72, no. 1, pp. 83–95. https://doi.org/10.1139/cjfas-2014-0058

    Article  Google Scholar 

  7. Carlson, A.K., Bailey, P.E., Fincel, M.J., and Graeb, B.D.S., Otoliths as elemental tracers of walleye environmental history: Insights for interjurisdictional fisheries management, Lake Reserv. Manag., 2016, vol. 32, no. 4, pp. 329–340. https://doi.org/10.1080/10402381.2016.1203845

    Article  CAS  Google Scholar 

  8. Chen, K., Ludsin, S., Marcek B.J., et al., Otolith microchemistry shows natal philopatry of walleye in western Lake Erie, J. Great Lakes Res., 2020, vol. 46, pp. 1349–1357.

    Article  CAS  Google Scholar 

  9. Ciepiela, L.R., Walters, A.W., Life-history variation of two inland salmonids revealed through otolith microchemistry analysis, Can. J. Fish. Aquat. Sci., 2019, vol. 76, pp. 1971–1981.

    Article  Google Scholar 

  10. Crozier, W.W., Schön, P.-J., Chaput, G. et al., Managing Atlantic salmon (Salmo salar L.) in the mixed stock environment: Challenges and considerations, ICES J. Mar. Sci., 2004, vol. 61, no. 8, pp. 1344–1358.

    Article  Google Scholar 

  11. del Villar-Guerra, D., Larsen, M.H., Baktoft, H., et al., The influence of initial developmental status on the life-history of sea trout (Salmo trutta), Sci. Rep., 2019, vol. 9, no. 1, pp. 1–13. https://doi.org/10.1038/s41598-019-49175-0

    Article  CAS  Google Scholar 

  12. Dodson, J.J., Sirois, P., Daigle G., et al., Otolith microstructure during the early life-history stages of brown trout: Validation and interpretation, N. Am. J. Fish. Manag., 2013, vol. 33, pp. 108–116.

    Article  Google Scholar 

  13. Elliott, J.M., Quantitative Ecology and the Brown Trout, Oxford Series in Ecology and Evolution, Oxford: Oxford Univ. Press, 1994.

  14. Elsdon, T.S., Wells, B.K., Campana, S.E., et al., Otolith chemistry to describe movements and life-history parameters of fishes – hypotheses, assumptions, limitations and inferences, Oceanogr. Mar. Biol., 2008, vol. 46, pp. 297–330.

    Google Scholar 

  15. Erkinaro, J., Mattsson, J., Erkinaro, H., et al., The River Tuloma salmon habitat inventory. TACIS Tuloma River Project, Work report, Helsinki: Helsinki Consulting Group Consortium ENVRUS, 9703, 2001.

  16. Gabrielsson, R.M., Kim, J., Reid, M.R., et al., Does the trace element composition of brown trout Salmo trutta eggs remain unchanged in spawning redds?, J. Fish Biol., 2012, vol. 81, pp. 1871–1879. https://doi.org/10.1111/j.1095-8649.2012.03396.x

    Article  CAS  PubMed  Google Scholar 

  17. Gagné, F., Descriptive statistics and analysis in biochemical ecotoxicology, in Biochemical Ecotoxicology. Principles and Methods, Amsterdam: Academic Press, 2014.

    Google Scholar 

  18. Garcez, R.C.S., Humston, R., Harbor, D., and Freitas, C.E.C., Otolith geochemistry in young-of-the-year peacock bass Cichla temensis for investigating natal dispersal in the Rio Negro (Amazon–Brazil) river system, Ecol. Freshw. Fish, 2015, vol. 24, pp. 242–251. https://doi.org/10.1111/eff.12142

    Article  Google Scholar 

  19. Geological map of the Fennoscandian shield, 2022. http://www.gigapan.com/gigapans/171438. Version 10/2022.

  20. Hack, J., Studies of longitudinal stream profiles in Virginia and Maryland, Washington: U.S. Geological Survey Professional Paper, 294-B, 1957.

  21. Huusko, A., Vainikka, A., Syrjänen, J., et al., Life-history of the adfluvial brown trout (Salmo trutta L.) in Eastern Fennoscandia, in Brown Trout: Biology, Ecology and Management, J. Lobón-Cerviá and N. Sanz, Eds., Hoboken: John Wiley and Sons Ltd, 2017.

    Google Scholar 

  22. Jonsson, B., and Greenberg, L., Egg incubation temperature influences the population-specific outmigration rate of juvenile brown trout Salmo trutta, J. Fish Biol., 2022, pp. 1–9. https://doi.org/10.1111/jfb.15022

  23. Jonsson, B., and Jonsson, N., Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life-Histories, Dordrecht et al.: Springer, 2011.

  24. Jonsson, B., Jonsson, N., Brodtkorb, E., and Ingebrigtsen, P.-J., Life-history traits of brown trout vary with the size of small streams, Funct. Ecol., 2001, vol. 15, pp. 310–317. https://doi.org/10.1046/j.1365-2435.2001.00528.x

    Article  Google Scholar 

  25. Karppinen, P., Mäkinen, T., Erkinaro, J., et al., Migratory and route-seeking behaviour of ascending Atlantic salmon in the regulated River Tuloma, Hydrobiologia, 2002, vol. 483, pp. 23–30. https://doi.org/10.1023/A:1021386319633

    Article  Google Scholar 

  26. Kendall, N.W., McMillan, J.R., Sloat, M.R., et al., Anadromy and residency in steelhead and rainbow trout (Oncorrhynchus mykiss): A review of processes and patterns, Can. J. Fish. Aquat. Sci., vol. 2015, no. 72, pp. 319–342. https://doi.org/10.1139/cjfas-2014-0192

  27. Kerr, L.A., and Campana, S.E., Chemical composition of fish hard parts as a natural marker of fish stocks, in Stock Identification Methods: Applications in Fishery Science, London: Academic Press, 2014.

    Google Scholar 

  28. Kerr, L.A., Hintzen, N.T., Cadrin, S.X., et al., Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish, ICES J. Mar. Sci., 2017, vol. 74, pp. 1708–1722.

    Article  Google Scholar 

  29. King, R.A., Hillman, R., Elsmere, P., et al., Investigating patterns of straying and mixed stock exploitation of sea trout, Salmo trutta, in rivers sharing an estuary in south-west England, Fish. Manag. Ecol., 2016, vol. 23, pp. 376–389. https://doi.org/10.1111/fme.12181

    Article  Google Scholar 

  30. Koljonen, M.-L., Gross, R., and Koskiniemi, J., Wild Estonian and Russian sea trout (Salmo trutta) in Finnish coastal sea trout catches: Results of genetic mixed-stock analysis, Hereditas, 2014, vol. 151, pp. 177–195. https://doi.org/10.1111/hrd2.00070

    Article  PubMed  Google Scholar 

  31. Lobón-Cerviá, J., Recruitment and survival rate variability in fish populations: Density-dependent regulation or further evidence of environmental determinants?, Can. J. Fish. Aquat. Sci., 2014, vol. 71, pp. 290–300.

    Article  Google Scholar 

  32. Louhi, P., Mäki-Petäys, A., and Erkinaro, J., Spawning habitat of Atlantic salmon and brown trout: General criteria and intragravel factors, River Res. Appl., 2008, vol. 24, pp. 330–339.

    Article  Google Scholar 

  33. Louison, M. J., and Stelzer, R. S., Use of first-order tributaries by brown trout (Salmo trutta) as nursery habitat in a cold water stream network, Ecol. Freshw. Fish, 2016, vol. 25, pp. 133–140. https://doi.org/10.1111/eff.12197

    Article  Google Scholar 

  34. Mäkinen, H., Niva, T., Koljonen, M.-L., et al., Temporal variation in lake run brown trout (Salmo trutta) mixed-stock fishery catches in a large Fennoscandian lake, Boreal Environ. Res., vol. 20, no. 5, pp. 651–665.

  35. Martin, J., Bareille, G., Berail, S., et al., Persistence of a southern Atlantic salmon population: Diversity of natal origins from otolith elemental and Sr isotopic signatures, Can. J. Fish. Aquat. Sci., 2013, vol. 70, pp. 182–197. https://doi.org/10.1139/cjfas-2012-0284

    Article  CAS  Google Scholar 

  36. Mikheev, P., Jarvis, M.G., Matthaei, C.D., et al., Geomorphological features drive spatiotemporal dynamics of young-of-the-year brown trout populations in a large New Zealand river catchment, Freshw. Biol., 2020, vol. 65 pp. 1392–1400.

    Article  Google Scholar 

  37. Mikheev, P.B., Jarvis, M.G., Matthaei, C.D., et al., Straying of brown trout in the catchment of a large New Zealand river evaluated by otolith microchemistry, Ecol. Freshw. Fish., 2021, vol. 30, no. 4, pp. 433–443. https://doi.org/10.1111/eff.12595

    Article  Google Scholar 

  38. Murmansk Regional Directorate on Conservation and Enhancement of Fish Resources, in Annual Report for 1989 on Verkhnetulomskiy Reservoir, Murmansk: Murmanrybvod, 1989.

    Google Scholar 

  39. Nehlsen, W., Williams, J.E., and Lichatowich, J.A., Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington, Fisheries, 1991, vol. 16, pp. 4–21.

    Article  Google Scholar 

  40. Olley, R., Young, R.G., Closs, G.P., et al., Recruitment sources of brown trout identified by otolith trace element signatures, N. Z. J. Mar. Freshwater Res., 2011, vol. 45, no. 3, pp. 395–411. https://doi.org/10.1080/00288330.2011.592196

    Article  Google Scholar 

  41. Olsson, I.C., Greenberg, L.A., Bergman, E., Wysujack, K., Environmentally induced migration: The importance of food, Ecol. Lett., 2006, vol. 9, no. 6, pp. 645–651.

    Article  PubMed  Google Scholar 

  42. Orell, P., Erkinaro, J., Mäkinen, H., and Seppänen, M., Taimenseurannat Tuulomajoen vesistön Suomen puolen latvajoissa 2011–2014 (Monitoring of Brown Trout Populations in the Finnish Headwaters of the Tuloma System 2011–2014), Oulu: Nat. Res. Institute Finland, 2015.

  43. Pangle, K.L., Ludsin, S.A., Fryer, B.J., Otolith microchemistry as a stock identification tool for freshwater fishes: Testing its limits in Lake Erie, Can. J. Fish. Aquat. Sci., 2010, vol. 67, pp. 1475–1489. https://doi.org/10.1139/F10-076

    Article  Google Scholar 

  44. Piccolo, J.J., Norrgård, J.R., Greenberg, L.A., et al., Conservation of endemic landlocked salmonids in regulated rivers: A case-study from Lake Vänern, Sweden, Fish Fish., 2012, vol. 13, no. 4, pp. 418–433.

    Article  Google Scholar 

  45. Prichard, C.G., Student, J.J., Jonas, J.L., et al., Geologic variability underlying stream catchment areas correlates with fish otolith microchemistry across disparate glacial till depths, Fish. Res., 2019, vol. 216, pp. 109–119. https://doi.org/10.1016/j.fishres.2019.04.006

    Article  Google Scholar 

  46. Prusov, S.V., Zubchenko, A.V., Alexeev, M.Yu., et al., Sostoyanie zapasov i rybolovstva anadromnykh ryb Murmanskoi oblasti (Status Of Anadromous Fish Stocks and Fisheries in Murmansk Region), Murmansk: Polyar. Inst. Rybn. Khoz. Okeanogr., 2021.

  47. R Core Team, R: A Language and Environment For Statistical Computing, Vienna: R Foundation for Statistical Computing, 2017. http://www.R-project.org.

  48. Rosenfeld, J.S., Macdonald, S., Foster, D., et al., Importance of small streams as rearing habitat for coastal cutthroat trout, N. Am. J. Fish. Manag., 2002, vol. 22, pp. 177–187.

    Article  Google Scholar 

  49. Ruokonen, T.J., Kiljunen, M., Erkinaro, J., et al., Migration strategies of brown trout (Salmo trutta) in a subarctic river system as revealed by stable isotope analysis, Ecol. Freshw. Fish., 2019, vol. 28, pp. 53–61.

    Article  Google Scholar 

  50. Ryan, D., Shephard, S., and Kelly, F.L., Temporal stability and rates of post-depositional change in geochemical signatures of brown trout Salmo trutta scales, J. Fish Biol., 2016, vol. 89, pp. 1704–1719. https://doi.org/10.1111/jfb.13081

    Article  CAS  PubMed  Google Scholar 

  51. Shuster, B.I., Brown trout (Salmo trutta L.) of the Verkhnetulomskoe reservoir, in Rybokhozyaystvennye issledovaniya Verkhnetulomskogo i Serebryanskogo vodokhranilishch Murmanskoi oblasti, Sbornik nauchnykh trudov (Fisheries Research in Verkhnetulomskoe and Serebryanskoe Reservoirs of Murmansk Region, Collection of Scientific Papers), Murmansk: Polyar. Inst. Rybn. Khoz. Okeanogr., 1985.

  52. Swatdipong, A., Vasemägi, A., Niva, T., et al., High level of population genetic structuring in lake-run brown trout, Salmo trutta, of the Inari Basin, northern Finland, J. Fish Biol., 2010, vol. 77, pp. 2048–2071. https://doi.org/10.1111/j.1095-8649.2010.02784.x

    Article  CAS  PubMed  Google Scholar 

  53. Syrjänen, J., Vainikka, A., Louhi, P. et al., History, conservation and management of adfluvial brown trout stocks in Finland, in Brown Trout: Biology, Ecology and Management, J. Lobón-Cerviá and N. Sanz, Eds., Hoboken: John Wiley and Sons Ltd., 2018. https://doi.org/10.1002/9781119268352.ch28

    Book  Google Scholar 

  54. Tretyak, V.L., Rudneva G.B., and Zubchenko A.V., Assessment of Optimal Spawning Stock and Factors Affecting the Abundance of Atlantic Salmon in the Tuloma River, Copenhagen: ICES, 1997.

    Google Scholar 

  55. Vähä, J.-P., Erkinaro, J., Falkegård, M., et al., Genetic stock identification of Atlantic salmon and its evaluation in a large population complex, Can. J. Fish. Aquat. Sci., 2017, vol. 74, no. 3, pp. 327–338. https://doi.org/10.1139/cjfas-2015-0606

    Article  Google Scholar 

  56. Vatland, S., and Caudron, A., Movement and early survival of age-0 brown trout, Freshw. Biol., 2015, vol. 60, pp. 1252–1262. https://doi.org/10.1111/fwb.12551

    Article  Google Scholar 

  57. Veinott, G., Westley, P.A.H., Warner, L., and Purchase, C.F., Assigning origins in a potentially mixedstock recreational sea trout (Salmo trutta) fishery, Ecol. Freshw. Fish, 2012, vol. 21, no. 4, pp. 541–551. https://doi.org/10.1111/j.1600-0633.2012.00574.x

    Article  Google Scholar 

  58. Warburton, M.L., Jarvis, M.G., and Closs, G.P., Otolith microchemistry indicates regional phylopatry in the larval phase of an amphidromous fish (Gobiomorphus hubbsi), N. Z. J. Mar. Freshw. Res., 2018, vol. 52, pp. 398–408. https://doi.org/10.1080/00288330.2017.1421237

    Article  CAS  Google Scholar 

  59. Watson, N.M., Prichard, C.G., Jonas, J.L., et al., Otolith-chemistry-based discrimination of wild- and hatchery-origin Steelhead across the Lake Michigan basin, N. Am. J. Fish. Manag., 2018, vol. 38, pp. 820–832.

    Article  Google Scholar 

  60. Whitledge, G.W., Chapman, D.C., Farver, J.R., et al., Identifying sources and year classes contributing to invasive grass carp in the Laurentian Great Lakes, J. Great Lakes Res., 2021, vol. 47, pp. 14–28.

    Article  Google Scholar 

  61. Young, K.A., Gaskell, P., Jacklin, T., and Williams, J.E., Brown trout management for the 21st century, in Brown Trout: Biology, Ecology and Management, J. Lobón-Cerviá and N. Sanz, Eds., Hoboken: John Wiley and Sons Ltd., 2018.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Theo Caféé (Comprehensive School Raymond Savignac, Villefranche-de-Rouergue, France) and Nicky McHugh (University of Otago, Dunedin, New Zealand) for help in the laboratory. We would like to thank anonymous reviewers for their constructive comments on this manuscript.

Funding

This study was supported with funds from the University of Otago Doctoral Scholarship awarded to Pavel Mikheev, Barry Jonassen Award provided by Australian Society for Fish Biology, as well as with the partial support of the grant of the Ministry of Education and Science of the Russian Federation project no. 2019-0858 “Biogeochemical and geochemical studies of landscapes in the conditions of the development of mineral deposits, the search for new methods of monitoring and forecasting the state of the environment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Mikheev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, P.B., Prusov, S.V., Erkinaro, J. et al. Tributary-Specific Contribution to a Lacustrine Mixed-Stock Fishery of Brown Trout Salmo trutta (Salmonidae) in a Diverse Sub-Arctic Watershed. J. Ichthyol. 63, 319–332 (2023). https://doi.org/10.1134/S0032945223020121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223020121

Keywords:

Navigation