Skip to main content
Log in

A new metazoan from the Vendian of the White Sea, Russia, with possible affinities to the ascidians

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Two specimens recovered from late Neoproterozoic shallow marine sediments of northern Russia may be the oldest known ascidians. Dated at around 555 Ma, these, together with the younger Ausia from the Nama Group in southwestern Africa, are probably relatives of these invertebrate chordates, which have a deep time origin predicted by molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ayala, F.J., Rzhestsky, A., and Ayala, F.J., Origin of the Metazoan Phyla: Molecular Clocks Confirm Paleontological Estimates, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 606–611.

    Article  Google Scholar 

  • Bengtson, S., Spicules, in Early Cambrian Fossils from South Australia, Bengtson, S., et al., Eds., Mem. Assoc. Australas. Palaeontol., 1990, vol. 9, pp. 24–37.

  • Blair, J.E. and Hedges, S.B., Molecular Phylogeny and Divergence Times of Deuterostome Animals, Mol. Biol. Evol., 2005, vol. 22, no. 11, pp. 2275–2284.

    Article  Google Scholar 

  • Boardman, R.S., Cheetham, A.H., and Blake, D., and Cook, P.L., Bryozoa in Treatise on Invertebrate Paleontology: Part G, Revised, Robinson, R.A., Ed., Boulder and Lawrence: Geol. Soc. Am. and Univ. Kans. Press, 1983, vol. 1, pp. 1–625.

    Google Scholar 

  • Bourlat, S.J., Juliusdottir, T., Lowe, C.J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E.S., Thorndyke, M., Nakano, H., Kohn, A.B., Heyland, A., Moroz, L.L., Copley, R.R., and Telford, M.J., Deuterostome Phylogeny Reveals Monophyletic Chordates and the New Phylum Xenoturbellida, Nature, 2006, vol. 447, no. 7115, pp. 85–88.

    Article  Google Scholar 

  • Buchsbaum, R., Buchsbaum, M., Pearse, J., and Pearse, V., Animals without Backbone, Chicago: Univ. Chicago Press, 1985, 3rd ed.

    Google Scholar 

  • Cameron, C.B., Garey, J.R., and Swalla, B.J., Evolution of the Chordate Body Plan: New Insights from Phylogenetic Analyses of Deuterostome Phyla, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 4469–4474.

    Article  Google Scholar 

  • Chen, J.-Y., Huang, D.-Y., Peng, Q.-Q., et al., The First Tunicate from the Early Cambrian of South China, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 14, pp. 8314–8318.

    Article  Google Scholar 

  • Chistyakov, V.G., Kalmykova, N.A., Nesov, L.A., and Suslov, G.A., On the Presence of Vendian Sediments in the Middle Reaches of the Onega River and Possible Existence of Tunicates (Tunicata: Chordata) in the Precambrian, Vestn. Leningr. Univ., 1984, no. 6, pp. 11–19.

  • Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K.G., and Adoutte A., An Analysis of the Origin of Metazoans, Using Comparisons of Partial Sequences of the 28S RNA, Reveals An Early Emergence of Triploblasts, EMBO J., 1991, vol. 10, pp. 499–503.

    Google Scholar 

  • Conway Morris, S., Ediacaran-Like Fossils in Cambrian Burgess Shale-Type Faunas of North America, Palaeontology, 1993, vol. 36, pp. 593–635.

    Google Scholar 

  • Delsuc, F., Brinkmann, K., Chourrout, D., and Philippe, H., Tunicates and not Cephalochordates are the Closest Living Relatives of Vertebrates, Nature, 2006, vol. 439, no. 7079, pp. 965–968.

    Article  Google Scholar 

  • Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G., and Vickers-Rich, P., The Rise of Animals. Evolution and Diversification of the Kingdom Animalia, Baltimore: Johns Hopkins Univ. Press, 2007.

    Google Scholar 

  • Fedonkin, M.A. and Ivantsov, A.Yu., Ventogyrus, a Possible Siphonophore-Like Trilobozoan Coelenterate from the Vendian Sequence (Late Neoproterozoic), Northern Russia, in The Rise and Fall of the Ediacaran Biota, Vickers-Rich, P. and Komarower, P., Eds., London: Geol. Soc. London, 2007, pp. 187–194.

    Google Scholar 

  • Garstang, W., The Morphology of the Tunicata and Its Bearing on the Phylogeny of the Chordata, J. Microscopy Soc., 1928, vol. 72, pp. 51–87.

    Google Scholar 

  • Gehling, J.G. and Rigby, J.K., Long Expected Sponges from the Neoproterozoic Ediacara Fauna of South Australia, J. Paleontol., 1996, vol. 70, no. 2, pp. 185–195.

    Google Scholar 

  • Grazhdankin, D.V., Structure and Depositional Environment of the Vendian Complex in the Southeastern White Sea Area, Stratigr. Geol. Correlation, 2003, vol. 11, no. 4, pp. 313–331.

    Google Scholar 

  • Hahn, G. and Pflug, H.D., Polypenartige Organismen aus dem Jung-Prakambrium (Nama-Gruppe) von Namibia, Geol. Palaeontol., 1985, vol. 19, pp. 1–13.

    Google Scholar 

  • Hill, D., Archaeocyatha, in Treatise on Invertebrate Paleontology: Part E, Revised, Teichert, C., Ed., Boulder and Lawrence: Geol. Soc. Am. And Univ. Kans. Press, 1972, 2nd ed., pp. 1–158.

    Google Scholar 

  • Ivantsov, A.Yu. and Grazhdankin, D.V., A New Representative of the Petalonamae from the Upper Vendian of the Arkhangelsk Region, Paleontol. J., 1997, vol. 31, no. 1, pp. 1–16.

    Google Scholar 

  • Jenkins, R.F., Functional and Ecological Aspects of Ediacaran Assemblages, in Origin and Early Evolution of the Metazoa, Lipps, J.H., Signor, P.W., Eds., New York: Plenum Press, 1992, pp. 131–176.

    Google Scholar 

  • Kott, P., The Australian Ascidiacea. Part 4, Aplousobranchia (3), Didemnidae, Mem. Queensl. Mus., 2001, vol. 47, no. 1, pp. 1–407.

    Google Scholar 

  • Madin, L. and Fremer, P., Jellyfish-Like Creatures May Play Major Role in Fate of CO2 in the ocean, http://www.physorg.com/news71148175.html (2006).

  • Martin, M.W., Grazhdankin, D.V., Bowring, S.A., Evans, D.A.D., Fedonkin, M.A., and Kirschvink, J.L., Age of Neoproterozoic Bilaterian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution, Science, 2000, vol. 288, pp. 841–845.

    Article  Google Scholar 

  • Matthews, S.C. and Missarzhevsky, V.V., Small Shelly Fossils of Late Precambrian and Early Cambrian Age: a Review of Recent Work, Quart. J. Geol. Soc., 1975, vol. 131, pp. 289–304.

    Article  Google Scholar 

  • McCaffrey, M.A., Moldowan, J.M., Lipton, P.A., Summons, R.E., Peters, K.E., Jeganathan, A., and Watt, D.S., Paleoenvironmental Implications of Novel C30 Steranes in Precambrian to Cenozoic Age Petroleum and Bitumens, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 529–532.

    Article  Google Scholar 

  • Müller, K.J., Palaeobotryllus from the Upper Cambrian of Nevada—a Probable Ascidian, Lethaia, 1977, vol. 10, no. 2, pp. 107–118.

    Article  Google Scholar 

  • Nakatani, Y., Takeda, K., Kohara, Y., and Morishita, S., Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates, Genome Res., 2007, vol. 17, pp. 1254–1265.

    Article  Google Scholar 

  • Nei, M., Xu, P., and Glazko, G., Estimation of Divergence Times from Multiprotein Sequences for a Few Mammalian Species and Several Distantly Related Organisms, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 2497–2502.

    Article  Google Scholar 

  • Pennachetti, C.A., Functional Morphology of the Branchial Basket of Ascidia paratropa (Tunicata, Ascidiacea), Zoomorphology, 1984, vol. 104, pp. 216–222.

    Article  Google Scholar 

  • Peterson, K.V., Lyons, J., Nowak, K.S., Takacs, C.M., Wargo, M.J., and McPeek, M.A., Estimating Metazoan Divergence Times with a Molecular Clock, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 6536–6541.

    Article  Google Scholar 

  • Philippe, K., Chenuil, A., and Adoutte, A., Can the Cambrian Explosion Be Inferred Through Molecular Phylogeny?, Development, 1994, Suppl. 120, pp. 15–25.

  • Rehder, D., The Bioinorganic Chemistry of Vanadium, Angew. Chem., 1991, vol. 30, pp. 148–167.

    Article  Google Scholar 

  • Rehder, D., Structure and Function of Vanadium Compounds in Living Organisms, BioMetals, 1992, vol. 5, pp. 3–12.

    Article  Google Scholar 

  • Satoh, N., Developmental Biology of Ascidians, New York: Cambridge Univ. Press, 1994.

    Google Scholar 

  • Shu, D.-G., Chen, L., Han, J., and Zhang, S.-L., An Early Cambrian Tunicate from China, Nature, 2001, vol. 411, pp. 472–473.

    Article  Google Scholar 

  • Steiner, M., Mehl, D., Reitner, J., and Erdtmann, B.-D., Oldest Entirely Preserved Sponges and Other Fossils from the Lowermost Cambrian and a New Facies Reconstruction of the Yangtze Platform (China), Berl. Geowiss. Abh. E, 1993, vol. 9, pp. 293–329.

    Google Scholar 

  • Swalla, B.J. and Smith, A.B., Deciphering Deuterostome Phylogeny: Molecular, Morphological and Palaeontological Perspectives, Phil. Trans. R. Soc. Lond. Ser. B, 2008, vol. 363, no. 1496, pp. 1557–1568.

    Article  Google Scholar 

  • Sokolov, B.S., Pre-Cambrian Biosphere in the Light of Paleontological Data, Vestn. Akad. Nauk SSSR, 1972, no. 8, pp. 48–54.

  • Stankovsky, A.F., Sinitsyn, A.V., and Shinkarev, N.F., Buried Flood Basalts of the Onega Peninsula, White Sea, Vestn. Leningr. Univ., 1972, no. 18, pp. 12–20.

  • Stankovsky, A.F., Verichev, E.M., and Dobeiko, M.P., The Vendian of the Southeastern White Sea Region, in Vendskaya sistema. T. 2. Stratigrafiya i geol. protsessy (Vendian System: Vol. 2. Stratigraphy and Geological Processes), Moscow: Nauka, 1985, pp. 67–76.

    Google Scholar 

  • Wada, H. and Satoh, N., Details of the Evolutionary History from Invertebrates to Vertebrates, As Deduced from the Sequences of 18S RDNA, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 1801–1804.

    Article  Google Scholar 

  • Wada, H., Evolutionary History of Free-Swimming and Sessile Lifestyles in Urochordates As Deduced from 18S RDNA Molecular Phylogeny, Mol. Biol. Evol., 1998, vol. 15, pp. 1189–1194.

    Google Scholar 

  • Wainright, P.O., Hinkle, G., Sogin, M.L., and Stickel, S.K., Monophyletic Origins of the Metazoa: An Evolutionary Link with Fungi, Science, 1993, vol. 260, pp. 340–342.

    Article  Google Scholar 

  • Wang, D., Kumar, Y.-C., and Hedges, S.B., Divergence Time Estimates for the Early History of Animal Phyla and the Origin of Plants, Animals and Fungi, Proc. R. Soc. Lond. Ser. B, 1999, vol. 266, pp. 163–171.

    Article  Google Scholar 

  • Williams, G.C., The Pennatulacea of Southern Africa (Coelenterata, Anthozoa), Ann. S. Afr. Museum, 1990, vol. 99, pp. 31–119.

    Google Scholar 

  • Zeng, L.Y. and Swalla, B.J., Molecular Phylogeny of the Protochordates: Chordate Evolution, Can. J. Zool., 2005, vol. 83, no. 1, pp. 24–33.

    Article  Google Scholar 

  • Zhang, X. and Pratt, B.R., New and Extraordinary Early Cambrian Sponge Spicule Assemblage from China, Geology, 1994, vol. 22, pp. 43–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vickers-Rich.

Additional information

Original Russian Text © M.A. Fedonkin, P. Vickers-Rich, B.J. Swalla, P. Trusler, M. Hall, 2012, published in Paleontologicheskii Zhurnal, 2012, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedonkin, M.A., Vickers-Rich, P., Swalla, B.J. et al. A new metazoan from the Vendian of the White Sea, Russia, with possible affinities to the ascidians. Paleontol. J. 46, 1–11 (2012). https://doi.org/10.1134/S0031030112010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030112010042

Keywords

Navigation