Skip to main content
Log in

The Choice of a Donor Molecule in Genome Editing Experiments in Animal Cells

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Genome editing is a powerful tool that allows study of the properties of genes or changes to be made to the genetic sequence. Programmable nucleases that can induce double-strand breaks in the genomic sequence of interest have been developed over the past few decades. After initiation of a double-strand break (DSB) in DNA, the DSB can be repaired by the NHEJ (non-homologous end joining), which leads to various errors and gene knockout. Other repair options, HDR (homology directed repair) or SSTR (single-strand template repair), allow researchers to make desired changes in the gene. HDR occurs in the presence of a donor template, in natural conditions the donor template is a sister chromatid. The efficiency of HDR and SSTR is significantly lower than the efficiency of NHEJ in genome editing. Double-stranded, single-stranded and long single-stranded DNAs are used to increase efficiency and to make desired changes in genomic DNA. In this review, we discuss donor molecules that are used for DSB repair using HDR or SSTR during genome editing, their application, and modifications to increase the efficiency of HDR and SSTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Durai S., Mani M., Kandavelou K., Wu J., Porteus M.H., Chandrasegaran S. 2005. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33 (18), 3978–5990. https://doi.org/10.1093/nar/gki912

    Article  CAS  Google Scholar 

  2. Silva G., Poirot L., Galetto R., Smith J., Montoya G., Duchateau Ph., Pâques F. 2011. Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Curr. Gene Therapy11 (1), 11–27. https://doi.org/10.2174/156652311794520111

    Article  CAS  Google Scholar 

  3. Cermak T., Doyle E. L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39 (12), e82. https://doi.org/10.1093/nar/gkr218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guha T.K., Wai A., Hausner G. 2017. Programmable genome editing tools and their regulation for efficient genome engineering. Comp. Struct. Biotechnol. J. 15, 146–160. https://doi.org/10.1016/j.csbj.2016.12.006

    Article  CAS  Google Scholar 

  6. Symington L.S., Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271. https://doi.org/10.1146/annurev-genet-110410-132435

    Article  CAS  PubMed  Google Scholar 

  7. Chang H., Pannunzio N.R., Adachi N., Lieber M.R. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18 (8), 495–506. https://doi.org/10.1038/nrm.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li T., Huang S., Zhao X., Wright D.A., Carpenter S., Spalding M.H., Weeks D.P., Yang B. 2011. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39 (14), 6315–6325. https://doi.org/10.1093/nar/gkr188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Devkota S. 2018. The road less traveled: Strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Casmediated transgenesis. BMB Rep. 51 (19), 437–443. https://doi.org/10.5483/BMBRep.2018.51.9.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richardson C.D., Kazane K.R., Feng S.J., Zelin E., Bray N.L., Schäfer A.J., Floor S.N., Corn J.E. 2018. CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 50 (8), 1132–1139. https://doi.org/10.1038/s41588-018-0174-0

    Article  CAS  PubMed  Google Scholar 

  11. Hockemeyer D., Soldner F., Beard C., Gao Q., Mitalipova M., DeKelver R.C., Katibah G.E., Amora R., Boydston E.A., Zeitler B., Meng X., Miller J.C., Zhang L., Rebar E.J., Gregory Ph.D., et al. 2009. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857. https://doi.org/10.1038/nbt.1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hockemeyer D., Wang H., Kiani S., Lai C.S., Gao Q., Cassady J.P., Cost G.J., Zhang L., Santiago Y., Miller J.C., Zeitler B., Cherone J.M., Meng X., Hinkley S.J., Rebar E.J., et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734. https://doi.org/10.1038/nbt.1927

  13. Sommer D., Peters A., Wirtz T., Mai M., Ackermann J., Thabet Y., Schmidt J., Weighardt H., Wunderlich F.T., Degen J., Schultze J.L., Beyer M. 2014. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases. Nat. Commun. 5, 3045. https://doi.org/10.1038/ncomms4045

    Article  CAS  PubMed  Google Scholar 

  14. Heyer W.D., Ehmsen K.T., Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139. https://doi.org/10.1146/annurev-genet-051710-150955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yanik M., Ponnam S., Wimmer T., Trimborn L., Müller C., Gambert I., Ginsberg J., Janise A., Domicke J., Wende W., Lorenz B., Stieger K. 2018. Development of a reporter system to explore MMEJ in the context of replacing large genomic fragments. Mol. Therapy. Nucl. Acids. 11, 407–415. https://doi.org/10.1016/j.omtn.2018.03.010

    Article  CAS  Google Scholar 

  16. Smirnikhina S.A., Anuchina A.A., Lavrov A.V. 2019. Ways of improving precise knock-in by genome-editing technologies. Hum. Genet. 138 (1), 1–19. https://doi.org/10.1007/s00439-018-1953-5

    Article  PubMed  Google Scholar 

  17. Lin S., Staahl B.T., Alla R.K., Doudna J.A. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife. 3, e04766. https://doi.org/10.7554/eLife.04766

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seol J.H., Shim E.Y., Lee S.E. 2018. Microhomology-mediated end joining: Good, bad and ugly. Mutat. Res. 809, 81–87.

    Article  CAS  Google Scholar 

  19. González-Marín C., Gosálvez J., Roy R. 2012. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Internat. J. Mol. Sci. 13 (11), 14026–14052. https://doi.org/10.3390/ijms131114026

    Article  CAS  Google Scholar 

  20. Liu M., Rehman S., Tang X., Fan Q., Chen D., Ma W. 2019. Methodologies for improving HDR efficiency. Front. Genet. 9 (691). https://doi.org/10.3389/fgene.2018.00691

  21. Zhu Z., Chung W.H., Shim E.Y, Lee S.E., Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 34 (6), 981‒994. https://doi.org/10.1016/j.cell.2008.08.037

    Article  CAS  Google Scholar 

  22. Falck J., Coates J., Jackson S.P. 2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 434 (7033), 605‒611. https://doi.org/10.1038/nature03442

    Article  CAS  PubMed  Google Scholar 

  23. Dupré A., Boyer-Chatenet L., Gautier J. 2006. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat. Struct. Mol. Biol. 13 (5), 451–457. https://doi.org/10.1038/nsmb1090

    Article  CAS  PubMed  Google Scholar 

  24. Helleday T., Lo J., van Gent D.C., Engelward B.P. 2007. DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair. 6(7), 923–935. https://doi.org/10.1016/j.dnarep.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  25. Liu J., Ede C., Wright W. D., Gore S.K., Jenkins S.S., Freudenthal B.D., Washington M.T., Veaute X., Heyer W.-D. 2017. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops. eLife. 6, e22195. https://doi.org/10.7554/eLife.22195

    Article  PubMed  PubMed Central  Google Scholar 

  26. McMahill M.S., Sham C.W., Bishop D.K. 2007. Synthesis-dependent strand annealing in meiosis. PLoS Biol. 5 (11), e299. https://doi.org/10.1371/journal.pbio.0050299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agmon N., Yovel M., Harari Y., Liefshitz B., Kupiec M. 2011. The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage. Nucleic Acids Res. 39 (16), 7009–7019. https://doi.org/10.1093/nar/gkr277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis L., Zhang Y., Maizels N. 2018. Assaying repair at DNA nicks. Methods Enzymol. 601, 71–89. https://doi.org/10.1016/bs.mie.2017.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallagher D.N., Pham N., Tsai A.M., Janto A.N., Choi J., Ira G., Haber J.E. 2020. A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet. 16 (10), e1008689. https://doi.org/10.1371/journal.pgen.1008689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gallagher D.N., Haber J.E. 2021. Single-strand template repair: Key insights to increase the efficiency of gene editing. Curr. Genet. 67, 747–753. https://doi.org/10.1007/s00294-021-01186-z

    Article  CAS  PubMed  Google Scholar 

  31. Hu Z., Zhou M., Wu Y., Li Z., Liu X., Wu L., Liang D. 2019. ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A‑patient-derived iPSCs and ECs. Mol. Therapy. Nucl. Acids. 17, 198–209. https://doi.org/10.1016/j.omtn.2019.05.019

    Article  CAS  Google Scholar 

  32. Bennett H., Aguilar-Martinez E., Adamson A.D. 2021. CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Methods (San Diego, CA). 191, 3–14. https://doi.org/10.1016/j.ymeth.2020.10.012

    Article  CAS  Google Scholar 

  33. Cristea S., Freyvert Y., Santiago Y. 2013. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioengin. 110 (3), 871–880. https://doi.org/10.1002/bit.24733

    Article  CAS  Google Scholar 

  34. Fueller J., Herbst K., Meurer M., Gubicza K., Kurtulmus B., Knopf J.D., Kirrmaier D., Buchmuller B.C., Pereira G., Lemberg M.K., Knop M. 2020. CRISPR-Cas12a-assisted PCR tagging of mammalian genes. J. Cell Biol. 219 (6), e201910210. https://doi.org/10.1083/jcb.201910210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen F., Pruett-Miller S.M., Davis G.D. 2015. Gene editing using ssODNs with engineered endonucleases. Methods Mol. Biol. 1239, 251–265. https://doi.org/10.1007/978-1-4939-1862-1_14

    Article  CAS  PubMed  Google Scholar 

  36. Myagkaya N.O., Marochkin N.A., Norbobaeva M.B., Serba T.V., Starodub M.A., Kurbedinov R.A., Kostenko S.A., Zayats I.V. 2020. A review of the CRISPR/Cas9 method for genome editing. Molodoi Uchenyi. 12 (302), 81–85.

    Google Scholar 

  37. Designing Homologous Repair Templates. New England BioLabs Inc. https://international.neb.com/applications/genome-editing/designing-homologous-repair-templates.

  38. Mao C.Z., Zheng L., Zhou Y.M., Wu H.-Y., Xia J.-B., Liang C.-Q., Guo X.-F., Peng W.-T., Zhao H., Cai W.-B., Kim S.-K., Park K.-S., Cai D.-Q., Qi X.-F. 2018. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis. FASEB J. fj201800093. https://doi.org/10.1096/fj.201800093

  39. Pineault K.M., Novoa A., Lozovska A., Wellik D.M., Mallo M. 2019. Two CRISPR/Cas9-mediated methods for targeting complex insertions, deletions, or replacements in mouse. Methods X. 6, 2088–2100. https://doi.org/10.1016/j.mex.2019.09.003

    Article  Google Scholar 

  40. Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevale J., Li P. J., Hiatt J., Saco J., Krystofinski P., Li H., Tobin V., Nguyen D.N., Lee M.R., Putnam A.L., Ferris A.L., Chen J.W., et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 559 (7714), 405–409. https://doi.org/10.1038/s41586-018-0326-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quadros R.M., Miura H., Harms D.W., Akatsuka H., Sato T., Aida T., Redder R., Richardson G.P., Inagaki Y., Sakai D., Buckley S.M., Seshacharyulu P., Batra S.K., Behlke M.A., Zeiner S.A., et al. 2017. Easi-CRISPR: A robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18 (1), 92. https://doi.org/10.1186/s13059-017-1220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miura H., Gurumurthy C.B., Sato T., Sato M., Ohtsuka M. 2015. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci. Rep. 5, 12799. https://doi.org/10.1038/srep12799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leonetti M.D., Sekine S., Kamiyama D., Weissman J.S., Huang B. 2016. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc. Natl. Acad. Sci. U. S. A. 113 (25), E3501–E3508. https://doi.org/10.1073/pnas.1606731113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miura H., Quadros R.M., Gurumurthy C.B., Ohtsuka M. 2018. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protocols. 13 (1), 195–215. https://doi.org/10.1038/nprot.2017.153

    Article  CAS  PubMed  Google Scholar 

  45. Harrison G.P., Mayo M.S., Hunter E., Lever A.M. 1998. Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5' and 3' of the catalytic site. Nucleic Acids Res26 (14), 3433–3442. https://doi.org/10.1093/nar/26.14.3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai H., Liu L., An K., X. Lu, Harrison M., Zhao Y., Yan R., Lu Z., Li S., Lin S., Liang F., Qin W. 2020. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics. 21 (1), 67. https://doi.org/10.1186/s12864-020-6493-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Kaini P., Sander J.D., Joung J.K., Peterson R.T., Yeh J.-R.J. 2013. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One. 8 (7), e68708 https://doi.org/10.1371/journal.pone.0068708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34 (3), 339–344. https://doi.org/10.1038/nbt.3481

    Article  CAS  PubMed  Google Scholar 

  49. O'Brien A.R., Wilson L., Burgio G., Bauer D.C. 2019. Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Sci. Rep. 9 (1), 2788. https://doi.org/10.1038/s41598-019-39142-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lim D., Sreekanth V., Cox K.J., Law B.K., Wagner B.K., Karp J.M., Choudhary A. 2020. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat. Commun. 11 (1), 4043. https://doi.org/10.1038/s41467-020-17725-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harmsen T., Klaasen S., van de Vrugt H., Te Riele H. 2018. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res. 46 (6), 2945–2955. https://doi.org/10.1093/nar/gky076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shao Y., Guan Y., Wang L., Qiu Z., Liu M., Chen Y., Wu L., Li Y., Ma X., Liu M., Li D. 2014. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat. Protocols. 9 (10), 2493–2512. https://doi.org/10.1038/nprot.2014.171

    Article  CAS  PubMed  Google Scholar 

  53. Irion U., Krauss J., Nüsslein-Volhard C. 2014. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 141 (24), 4827–4830. https://doi.org/10.1242/dev.115584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang B., Karaçay B. Megamer single-stranded donor templates (ssDNA or ssODNs) for successful homology-directed repair (HDR) in genome editing applications. https://eu.idtdna.com/pages/education/decoded/ article/megamer-single-stranded-donor-templates-(ssdna-or-ssODNs)-for-successful-homology-directed-repair-(HDR)-in-genome-editing-applications.

  55. Yoshimi K., Oka Y., Miyasaka Y., Kotani Y., Yasumura M., Uno Y., Hattori K., Tanigawa A., Sato M., Oya M., Nakamura K., Matsushita N., Kobayashi K., Mashimo T. 2021. Combi-CRISPR: Combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Hum. Genet. 140 (2), 277–287. https://doi.org/10.1007/s00439-020-02198-4

    Article  CAS  PubMed  Google Scholar 

  56. Highly Specific Gene Knockins of Long Sequences Using CRISPR/Cas9 and a Single-stranded DNA Donor Template. Takara Bio USA, Inc. https://catalog.takara-bio.co.jp/PDFS/Highly-specific-gene-knockins-of-long-sequences-using-CRISPR_Cas9-and-a-single-stranded-DNA-donor-template.pdf.

  57. Zhao Y., Zheng Z., Cohen C.J., Gattinoni L., Pal-mer D.C., Restifo N.P., Rosenberg S.A., Morgan R.A. 2006. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol. Ther: J. Am. Soc. Gene Ther. 13 (1), 151–159. https://doi.org/10.1016/j.ymthe.2005.07.688

    Article  CAS  Google Scholar 

  58. Mello C.C., Kramer J.M., Stinchcomb D., Ambros V. 1991. Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10 (12), 3959–3970.

    Article  CAS  Google Scholar 

  59. Forbes D.J., Kirschner M.W., Newport J.W. 1983. Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell. 34 (1), 13–23. https://doi.org/10.1016/0092-8674(83)90132-0

    Article  CAS  PubMed  Google Scholar 

  60. Stinchcomb D.T., Shaw J.E., Carr S.H., Hirsh D. 1985. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol. Cell. Biol. 5 (12), 3484–3496. https://doi.org/10.1128/mcb.5.12.3484-3496.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghanta K.S., Mello C.C. 2020. Melting dsDNA donor molecules greatly improves precision genome editing in Caenorhabditis elegans. Genetics. 216 (3), 643–650. https://doi.org/10.1534/genetics.120.303564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Levi T., Sloutskin A., Kalifa R., Juven-Gershon T., Gerlitz O. 2020. Efficient in vivo introduction of point mutations using ssODN and a Co-CRISPR approach. Biol. Proc. Online. 22, 14. https://doi.org/10.1186/s12575-020-00123-7

    Article  CAS  Google Scholar 

  63. Boel A., De Saffel H., Steyaert W., Callewaert B., De Paepe A., Coucke P.J., Willaert A. 2018. CRISPR/ Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis. Models Mech. 11 (10), dmm035352. https://doi.org/10.1242/dmm.035352

    Article  CAS  Google Scholar 

  64. Gratz S.J., Cummings A.M., Nguyen J.N., Hamm D.C., Donohue L.K., Harrison M.M., Wildonger J., O’Connor-Giles K.M. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 194 (4), 1029–1035. https://doi.org/10.1534/genetics.113.152710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guide-it Long ssDNA Production System v. 2. Takara Bio USA, Inc. https://www.takarabio.com/products/ gene-function/gene-editing/crispr-cas9/long-ssdna-for-knockins.

  67. Bassett A.R., Tibbit C., Ponting C.P., Liu J.L. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4 (1), 220–228. https://doi.org/10.1016/j.celrep.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Codner G.F., Mianné J., Caulder A., Loeffler J., Fell R., King R., Allan A.J., Mackenzie M., Pike F.J., McCabe C.V., Christou S., Joynson S., Hutchison M., Stewart M.E., Kumar S, et al. 2018. Application of long single-stranded DNA donors in genome editing: Generation and validation of mouse mutants. BMC Biol. 16 (1), 70. https://doi.org/10.1186/s12915-018-0530-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoshimi K., Kunihiro Y., Kaneko T. 2016. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7, 10431. https://doi.org/10.1038/ncomms10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ranawakage D.C., Okada K., Sugio K., Kawaguchi Y., Kuninobu-Bonkohara Y., Takada T., Kamachi Y. 2021. Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front. Cell Dev. Biol. 8, 598634. https://doi.org/10.3389/fcell.2020.598634

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was conducted within the state assignment set out by the Ministry of Science and Higher Education of the Russian Federation for the Research Centre for Medical Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Smirnikhina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Novikova

Abbreviations: ZFN, zinc finger nuclease; TALEN, transcription activator-like effector nuclease; CRISPR, clustered regularly interspaced short palindromic repeats; PAM, protospacer adjacent motif; a-NHEJ, alternative non-homologous end joining; lssDNA, long single-strand DNA; dsDNA, double-strand DNA; DSB, double-strand break; с-NHEJ, classic non-homologous end joining; MMEJ, microhomology-mediated end joining; HDR, homology directed repair; NHEJ, non-homologous end joining; ssODNs, single-strand oligodeoxyribonucleotides; SSTR, single-strand template repair; SDSA, synthesis-dependent strand annealing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodina, O.V., Smirnikhina, S.A. The Choice of a Donor Molecule in Genome Editing Experiments in Animal Cells. Mol Biol 56, 372–381 (2022). https://doi.org/10.1134/S002689332203013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332203013X

Keywords:

Navigation