Skip to main content
Log in

Family 28 carbohydrate-binding module of the thermostable endo-1,4-β-glucanase CelD from Caldicellulosiruptor bescii maximizes enzyme activity and irreversibly binds to amorphous cellulose

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The nucleotide sequence of a chromosome fragment of the thermophilic anaerobic bacterium Caldicellulosiruptor bescii (syn. Anaerocellum thermophilum) has been determined. The fragment contains four open reading frames with the second encoding a 749 aa multimodular endo-1,4-β-glucanase CelD (85019 Da). The N-terminal region of the protein includes a signal peptide and a catalytic module of glycoside hydrolase family 5 (GH5), followed by a carbohydrate-binding module of family 28 (CBM28). The C-terminal region bears three SLH modules. The recombinant endoglucanase and its two separate modules, the catalytic module and CBM28, were produced in E. coli cells and purified to homogeneity. An analysis of the catalytic properties showed CelD to be an endo-1,4-β-glucanase with maximum activity on barley β-glucan at pH 6.2 and 70°C. The enzyme was stable at 50°C for 30 days. Upon removal of the C-terminal CBM28, the activity of GH5 was decreased on cellulose substrates, and its thermostability has dropped. Binding of CBM28 to amorphous cellulose has been almost irreversible as it could not be removed from this substrate in a range of pH of 4–11, temperatures of 0–75°C, and NaCl concentrations of 0–5 M. Only 100% formamide or 1% SDS have been able to remove the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GH:

glycoside hydrolase

SP:

signal peptide

Cat5:

catalytic module of glycoside hydrolase family 5

CBM28:

carbohydrate-binding module of family 28

SLH:

surface-layer homology module

BCC:

bacterial crystalline cellulose

PAG:

polyacrylamide gel

CMC:

carboxymethyl cellulose

SDS:

sodium dodecyl sulfate

References

  1. Tomme P., Warren R.A.J., Gilkes N.R. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37, 1–81.

    Article  PubMed  CAS  Google Scholar 

  2. Zverlov V.V., Schwarz W.H. 2008. Bacterial cellulose hydrolysis in anaerobic environmental systems Clostridium thermocellum and Clostridium stercorarium, thermophilic plant fibre degraders. In: Incredible Anaerobes: From Physiology to Genomics to Fuels. Eds. Wiegel J., Maier R.J., Adams M.W.W. Ann. N.Y. Acad. Sci. 1125, 298–307.

    Google Scholar 

  3. Boraston A.B., Bolam D.N., Gilbert H.J., Davies G.J. 2004. Carbohydrate-binding modules: Fine tuning polysaccharide recognition. Biochem. J. 382, 769–781.

    Article  PubMed  CAS  Google Scholar 

  4. Schwarz W.H., Zverlov V.V., Bahl H. 2004. Extracellular glycosyl hydrolases from clostridia. Adv. Appl. Microbiol. 56, 215–261.

    Article  PubMed  CAS  Google Scholar 

  5. Karita S., Sakka K., Ohmyia K. 1996. Cellulose-binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase 1V. J. Ferment. Bioeng. 81, 553–556.

    Article  CAS  Google Scholar 

  6. Svetlichnii V.A., Svetlichnaya T.P., Chernikh N.A., Zavarzin G.A. 1990. Anaerocellum thermophilum, gen. nov., sp. nov., an extremely thermophilic cellulolitic eubacterium isolated from hot-springs in the Valley of the Geysers. Microbiology. 59, 598–604.

    Google Scholar 

  7. Yang S.J., Kataeva I., Wiegel J., Yin Y., Dam P., Xu Y., Westpheling J., Adams M.W. 2010. Classification of Anaerocellum thermophilum strain DSM 6725 as Caldicellilosiruptor bescii sp. nov. Int. J. Syst. Evol. Microbiol. 60, 2011–2015.

    Article  PubMed  Google Scholar 

  8. Kataeva I.A., Yang S.J., Dam P., et al. 2009. Genome sequence of the anaerobic, thermophilic and cellulolitic bacterium Anaerocellum thermophilum DSM 6725. J. Bacteriol. 191, 3760–3761.

    Article  PubMed  CAS  Google Scholar 

  9. Blumer-Schuette S.E., Ozdemir I., Mistry D., et al. 2011. Complete genome sequences for the anaerobic extremely thermophilic plant biomass-degrading bacteria Caldicellilosiruptor hydrotermals, Caldicellilosiruptor kristianssonii, Caldicellilosiruptor kronotskyensis, Caldicellilosiruptor owensensis, and Caldicellilosiruptor lactoaceticus. J. Bacteriol. 193, 1483–1484.

    Article  PubMed  CAS  Google Scholar 

  10. http//www.cazy.org

  11. Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resourse for glycogenomics. Nucleic Acids Res. 37, D233–D238.

    Article  PubMed  CAS  Google Scholar 

  12. Blumer-Schuette S.E., Levis D. L., Kelly R.M. 2010. Phylogenetic, microbiological and glucoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellilosiruptor. Appl. Environ. Microbiol. 76, 8084–8092.

    Article  PubMed  CAS  Google Scholar 

  13. Teo V.S., Saul D.J., Bergqwist P.L. 1995. celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharalyticus. Appl. Microbial. Biotechnol. 43, 291–295.

    Article  CAS  Google Scholar 

  14. Zverlov V., Mahr S., Riedel K., Bronnenmeier K. 1998. Properties and gene structure of bifunctional cellulolitic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology. 144, 457–465.

    Article  PubMed  CAS  Google Scholar 

  15. Su X., Mackie R.I., Cann I.K. 2012. Biochemical and mutational analysis of a multidomain cellulase/mannanase from Caldicellilosiruptor bescii. Appl. Environ. Microbiol. 78, 2230–2240.

    Article  PubMed  CAS  Google Scholar 

  16. Bolchakova E.V., Ponomarev A.A., Novikov A.A., Svetlichnyi V.A., Velikodvorskaya G.A. 1994. Cloning and expression of genes coding for carbohydrate degrading enzymes of Anaerocellum thermophilum in E. coli. Biochem. Biophys. Res. Commun. 202, 1076–1080.

    Article  Google Scholar 

  17. Wood T.M., Bhat K.M. 1988. Methods for measuring of cellulase activities. Methods Enzymol. 160, 87–112.

    Article  CAS  Google Scholar 

  18. Zverlov V.V., Schantz N., Schwarz W.H. 2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249, 353–358.

    Article  PubMed  CAS  Google Scholar 

  19. Zverlov V.V., Volkov I.Y., Velikodvorskaya G.A., Schwarz W.H. 2001. The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: Differences in beta-glucan binding within family CBM4. Microbiology. 147, 621–629.

    PubMed  CAS  Google Scholar 

  20. Jamal S., Nurizzo D., Boraston A. B., Davies G.J. 2004. X-ray crystal structure of a non-crystalline cellulosespecific carbohydrate-binding module: CBM28. J. Mol. Biol. 339, 253–258.

    Article  PubMed  CAS  Google Scholar 

  21. Araki Y., Karita Sh., Tanaka A., Kondo M., Goto M. 2009. Characterization of family 17 and family 28 carbohydrate-binding modules from Clostridium josui Cel5A. Biosci. Biotechnol. Biochem. 73, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  22. Velikodvorskaya G.A., Zverlov V.V., Karyagina-Zhulina A.S., Lavrova N.V., Lunin V.G., Lunina N.A., Ryazanova E.M., Sergienko O.V., Tikhonova T.V. 2006. RF Patent no. RU2278160 (C2).

  23. Velikodvorskaya G.A., Tikhonova T.V., Gurvits I.D., Karyagina A.S., Lavrova N.V., Sergienko O.V., Tashlitskii V.N., Lunina N.A., Lunin V.G. 2010. Chimeric lactase capable of spontaneous and strong immobilization on cellulose and development of continuous-flow system for lactose hydrolysis at high temperatures. Appl. Envir. Microbiol. 76, 8071–8075.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lunina.

Additional information

Original Russian Text © G.A. Velikodvorskaya, L.A. Chekanovskaya, N.A. Lunina, O.V. Sergienko, V.G. Lunin, I.A. Dvortsov, V.V. Zverlov, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 4, pp. 667–673.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velikodvorskaya, G.A., Chekanovskaya, L.A., Lunina, N.A. et al. Family 28 carbohydrate-binding module of the thermostable endo-1,4-β-glucanase CelD from Caldicellulosiruptor bescii maximizes enzyme activity and irreversibly binds to amorphous cellulose. Mol Biol 47, 581–586 (2013). https://doi.org/10.1134/S0026893313040158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313040158

Keywords

Navigation