Skip to main content
Log in

Arf6, RalA, and BIRC5 protein expression in nonsmall cell lung cancer

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Evaluation of tumor marker expression pattern that determines individual progression parameters is one of the major topics in molecular oncopathology research. This work represents research on expression analysis of several Ras-Ral associated signal transduction pathway proteins (Arf6, RalA, and BIRC5) in accordance with clinical criteria in nonsmall cell lung cancer patients. Using Western-blot analysis and RT-PCR Arf6, RalA, and BIRC5, expression has been analyzed in 53 nonsmall cell lung cancer samples of different origin. Arf6 protein expression was increased in 55% nonsmall cell lung cancer tumor samples in comparison with normal tissue. In the group of squamous cell lung cancer, increase of Arf6 expression was observed more often. RalA protein expression was decreased in comparison to normal tissue samples in 64% of nonsmall cell lung cancer regardless of morphological structure. Correlation between the decrease of RalA protein expression and the absence of regional metastases was revealed for squamous cell lung cancer. BIRC5 protein expression in tumor samples versus corresponding normal tissue was 1.3 times more often elevated in the squamous cell lung cancer group (in 76% tumor samples). At the same time, increase of BIRC5 expression was detected only in 63% of adenocarcinoma tumor samples. A statistically significant decrease (p = 0.015) of RalA protein expression and the increase (p = 0.049) of Arf6 protein expression in comparison with normal tissue was found in T1–2N0M0 and T1–2N1–2M0 groups of squamous cell lung cancer, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

adenocarcinoma

LC:

lung cancer

NSCLC:

nonsmall cell lung cancer

SCLC:

squamous cell lung cancer

RT-PCR:

reverse transcription polymerase chain reaction

References

  1. Feig L.A. 2003. Ral-GTPases: Approaching their 15 minutes of fame. Trends Cell Biol. 13, 419–425.

    Article  PubMed  CAS  Google Scholar 

  2. Souza-Schorey C., Chavrier P. 2006. ARF proteins: Roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol. 7, 347–358.

    Article  Google Scholar 

  3. Kahn R.A., Cherfils J., Elias M., Lovering R.C., Munro S., Schurmann A. 2006. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol. 172, 645–650.

    Article  PubMed  CAS  Google Scholar 

  4. Brown H.A., Gutowski S., Moomaw C.R., Slaughter C., Sternweis P. C. 1993. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell. 75, 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  5. Paris S., Beraud-Dufour S., Robineau S., Bigay J., Antonny B., Chabre M., Chardin P. 1997. Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem. 272, 22221–22226.

    Article  PubMed  CAS  Google Scholar 

  6. Souza-Schorey C., Stahl P.D. 1995. Myristoylation is required for the intracellular localization and endocytic function of ARF6. Exp. Cell Res. 221, 153–159.

    Article  PubMed  Google Scholar 

  7. Xu L., Frankel P., Jackson D., Rotunda T., Boshans R.L., Souza-Schorey C., Foster D.A. 2003. Elevated phospholipase D activity in H-Rasbut not K-Ras-transformed cells by the synergistic action of RalA and Arf6. Mol. Cell Biol. 23, 645–654.

    Article  PubMed  CAS  Google Scholar 

  8. Foster D.A., Xu L. 2003. Phospholipase D in cell proliferation and cancer. Mol. Cancer Res. 1, 789–800.

    PubMed  CAS  Google Scholar 

  9. Shi M., Zheng Y., Garcia A., Xu L., Foster D.A. 2007. Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Lett. 258, 268–275.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao Y., Ehara H., Akao Y., Shamoto M., Nakagawa Y., Banno Y., Deguchi T., Ohishi N., Yagi K., Nozawa Y. 2000. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem. Biophys. Res. Commun. 278, 140–143.

    Article  PubMed  CAS  Google Scholar 

  11. Noh D.Y., Ahn S.J., Lee R.A., Park I.A., Kim J.H., Suh P.G., Ryu S.H., Lee K.H., Han J.S. 2000. Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 161, 207–214.

    Article  PubMed  CAS  Google Scholar 

  12. Chen Y., Rodrik V., Foster D.A. 2005. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene. 24, 672–679.

    Article  PubMed  CAS  Google Scholar 

  13. Vaira V., Lee C.W., Goel H.L., Bosari S., Languino L.R., Altieri D. C. 2007. Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene. 26, 2678–2684.

    Article  PubMed  CAS  Google Scholar 

  14. Altieri D. C. 2008. Survivin, cancer networks and pathway-directed drug discovery. Nature Rev. Cancer. 8, 61–70.

    Article  CAS  Google Scholar 

  15. Krepela E., Dankova P., Moravcikova E., Krepelova A., Prochazka J., Cermak J., Schutzner J., Zatloukal P., Benkova K. 2009. Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int. J. Oncol. 35, 1449–1462.

    Article  PubMed  CAS  Google Scholar 

  16. Vaishlia N.A., Zinov’eva M.V., Sass A.V., Kopantsev E.P., Vinogradova T.V., Sverdlov E.D. 2008. Increase of BIRC5 gene expression in non-small cell lung cancer and esophageal squamous cell carcinoma does not correlate with expression of genes SMAC/DIABLO and PML encoding its inhibitors. Mol. Biol. (Moscow). 42, 652–661.

    CAS  Google Scholar 

  17. Mehrotra S., Languino L.R., Raskett C.M., Mercurio A.M., Dohi T., Altieri D.C. 2010. IAP regulation of metastasis. Cancer Cell. 17, 53–64.

    Article  PubMed  CAS  Google Scholar 

  18. Smith S.C., Oxford G., Baras A.S., Owens C., Havaleshko D., Brautigan D.L., Safo M.K., Theodorescu D. 2007. Expression of Ral GTPases, their effectors, and activators in human bladder cancer. Clin. Cancer Res. 13, 3803–3813.

    Article  PubMed  CAS  Google Scholar 

  19. Tchevkina E., Agapova L., Dyakova N., Martinjuk A., Komelkov A., Tatosyan A. 2005. The small G-protein RalA stimulates metastasis of transformed cells. Oncogene. 24, 329–335.

    Article  PubMed  CAS  Google Scholar 

  20. Yin J., Pollock C., Tracy K., Chock M., Martin P., Oberst M., Kelly K. 2007. Activation of the Ral-GEF/Ral pathway promotes prostate cancer metastasis to bone. Mol. Cell Biol. 27, 7538–7550.

    Article  PubMed  CAS  Google Scholar 

  21. Oshita F., Ito H., Ikehara M., Ohgane N., Hamanaka N., Nakayama H., Saito H., Yamada K., Noda K., Mitsuda A., Kameda Y. 2004. Prognostic impact of survivin, cyclin D1, integrin beta1, and VEGF in patients with small adenocarcinoma of stage I lung cancer. Am. J. Clin. Oncol. 27, 425–428.

    Article  PubMed  CAS  Google Scholar 

  22. Kren L., Brazdil J., Hermanova M., Goncharuk V.N., Kallakury B.V., Kaur P., Ross J.S. 2004. Prognostic significance of anti-apoptosis proteins survivin and bcl-2 in non-small cell lung carcinomas: A clinicopathologic study of 102 cases. Appl. Immunohistochem. Mol. Morphol. 12, 44–49.

    PubMed  CAS  Google Scholar 

  23. Hashimoto S., Onodera Y., Hashimoto A., Tanaka M., Hamaguchi M., Yamada A., Sabe H. 2004. Requirement for Arf6 in breast cancer invasive activities. Proc. Natl. Acad. Sci. U.S.A. 101, 6647–6652.

    Article  PubMed  CAS  Google Scholar 

  24. Li M., Wang J., Ng S.S., Chan C.Y., He M.L., Yu F., Lai L., Shi C., Chen Y., Yew D.T., Kung H.F., Lin M.C. 2009. Adenosine diphosphate-ribosylation factor 6 is required for epidermal growth factor-induced glioblastoma cell proliferation. Cancer. 115, 4959–4972.

    Article  PubMed  CAS  Google Scholar 

  25. Frasa M.A., Maximiano F.C., Smolarczyk K., Francis R.E., Betson M.E., Lozano E., Goldenring J., Seabra M.C., Rak A., Ahmadian M.R., Braga V.M. 2010. Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Curr. Biol. 20, 198–208

    Article  PubMed  CAS  Google Scholar 

  26. Monzo M., Rosell R., Felip E., Astudillo J., Sanchez J.J., Maestre J., Martin C., Font A., Barnadas A., Abad A. 1999. A novel anti-apoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J. Clin. Oncol. 17, 2100–2104.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Knizhnik.

Additional information

Original Russian Text © A.V. Knizhnik, O.V. Kovaleva, K.K. Laktionov, V.V. Mochalnikova, A.V. Komelkov, E.M. Tchevkina, I.B. Zborovskaya, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 2, pp. 307–315.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knizhnik, A.V., Kovaleva, O.V., Laktionov, K.K. et al. Arf6, RalA, and BIRC5 protein expression in nonsmall cell lung cancer. Mol Biol 45, 275–282 (2011). https://doi.org/10.1134/S0026893310061032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310061032

Keywords

Navigation