Skip to main content
Log in

Lentiviral vectors

  • Devoted the Memory of Lev L’vovich Kisselev
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The delivery of genetic material to mammalian cells is of great importance for modern fundamental biology, biomedicine, biotechnology, agriculture, and veterinary medicine. The development of new efficient techniques of gene transfer to human cells led to the advent of gene therapy, a novel approach to treating severe metabolic disorders, some viral infections (including HIV infection), autoimmune diseases, and genetic defects causing cancer. The review considers the main principles of constructing gene transfer and expression systems based on lentiviruses, a powerful tool for human gene therapy and transgenic research, with a special focus on the genome structure and life cycle of lentiviruses and the design and safety of lentiviral vector systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seroogy C.M., Fathman C.G. 2000. The application of gene therapy in autoimmune diseases. Gene Ther. 7, 9–13.

    PubMed  CAS  Google Scholar 

  2. Kohn D.B., Bauer G., Rice C.R., et al. 1999. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood. 94, 368–371.

    PubMed  CAS  Google Scholar 

  3. Nemunaitis J., Fong T., Robbins J.M., et al. 1999. Phase I trial of interferon-γ(IFN-γ) retroviral vector administered intratumorally to patients with metastatic melanoma. Cancer Gene Ther. 6, 322–330.

    PubMed  CAS  Google Scholar 

  4. Shand N., Weber F., Mariani L., et al. 1999. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum. Gene Ther. 10, 2325–2335.

    PubMed  CAS  Google Scholar 

  5. Chang M.I., Panorchan P., Dobrowsky T.M., et al. 2005. Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J. Virol. 79, 14748–14755.

    PubMed  CAS  Google Scholar 

  6. Golding H., Zaitseva M., de Rosny E., et al. 2002. Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J. Virol. 76, 6780–6790.

    PubMed  CAS  Google Scholar 

  7. Pages J.C., Bru T.J. 2004. Toolbox for retrovectorologists. Gene Med. 6, S67–S82.

    CAS  Google Scholar 

  8. Depienne C., Mousnier A., Leh H., et al. 2001. Characterization of the nuclear import pathway for HIV-1 integrase. J. Biol. Chem. 276, 18102–18107.

    PubMed  CAS  Google Scholar 

  9. Piller S.C., Caly L., Jans D.A. 2003. Nuclear import of the pre-integration complex (PIC): The Achilles heel of HIV? Curr. Drug Targets. 4, 409–429.

    PubMed  CAS  Google Scholar 

  10. Nakielny S., Dreyfuss G. 1999. Transport of proteins and RNAs in and out of the nucleus. Cell. 99, 677–690.

    PubMed  CAS  Google Scholar 

  11. Haffar O.K., Popov S., Dubrovsky L., et al. 2000. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J. Mol. Biol. 299, 359–368.

    PubMed  CAS  Google Scholar 

  12. Sherman M.P., de Noronha C.M., Eckstein L.A., et al. 2003. Nuclear export of Vpr is required for efficient replication of human immunodeficiency virus type 1 in tissue macrophages. J. Virol. 77, 7582–7589.

    PubMed  CAS  Google Scholar 

  13. Goh W.C., Rogel M.E., Kinsey C.M., et al. 1998. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo. Nature Med. 4, 65–71.

    PubMed  CAS  Google Scholar 

  14. Li L., Olvera J.M., Yoder K.E., Mitchell R.S., et al. 2001. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281.

    PubMed  CAS  Google Scholar 

  15. Schroder A.R., Shinn P., Chen H., Berry C., et al. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110, 521–529.

    PubMed  CAS  Google Scholar 

  16. Das S.R., Jameel S. 2005. Biology of the HIV Nef protein. Ind. J. Med. Res. 121, 315–332.

    CAS  Google Scholar 

  17. Brady J., Kashanchi F. 2005 Tat gets the “Green” light on transcription initiation. Retrovirology. 2, 1–8.

    Google Scholar 

  18. Henriet S., Richer D., Bernacchi S., et al. 2005. Cooperative and specific binding of Vif to the 5′ region of HIV-1 genomic RNA. J. Mol. Biol. 354, 55–72.

    PubMed  CAS  Google Scholar 

  19. Lever A.M., Strappe P.M., Zhao J. 2004. Lentiviral vectors. J. Biomed. Sci. 11, 439–449.

    PubMed  CAS  Google Scholar 

  20. Mikaelian I., Krieg M., Gait M.J., Karn J. 1996. Interactions of INS (CRS) elements and the splicing machinery regulate the production of Rev-responsive mRNAs. J. Mol. Biol. 257, 246–264.

    PubMed  CAS  Google Scholar 

  21. Zufferey R., Nagy D. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnol. 15, 871–875.

    CAS  Google Scholar 

  22. Mangeot P.E., Negre D. 2000. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J. Virol. 74, 8307–8315.

    PubMed  CAS  Google Scholar 

  23. Poeschla E.M., Wong-Staal F. 1998. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Med. 4, 354–357.

    PubMed  CAS  Google Scholar 

  24. Berkowitz R., Ilves H. 2001. Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J. Virol. 75, 3371–3382.

    PubMed  CAS  Google Scholar 

  25. Mselli-Lakhal L., Favier C. 1998. Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch. Virol. 143, 681–695.

    PubMed  CAS  Google Scholar 

  26. Olsen J.C. 1998. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 5, 1481–1487.

    PubMed  CAS  Google Scholar 

  27. Metharom P., Takyar S. 2000. Novel bovine lentiviral vectors based on Jembrana disease virus. J. Gene Med. 2, 176–185.

    PubMed  CAS  Google Scholar 

  28. Stewart S.A., Dykxhoorn D.M. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 9, 493–501.

    PubMed  CAS  Google Scholar 

  29. Carroll R., Lin J.T. 1994. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 68, 6047–6051.

    PubMed  CAS  Google Scholar 

  30. Blomer U., Naldini L., Kafri T., et al. 1997. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649.

    PubMed  CAS  Google Scholar 

  31. Kafri T., Blomer U. 1997. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genet. 17, 314–317.

    PubMed  CAS  Google Scholar 

  32. Haselhorst D., Kaye J.F. 1998. Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer. J. Gen. Virol. 79, 231–237.

    PubMed  CAS  Google Scholar 

  33. Farson D., Witt R. 2001. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum. Gene Ther. 12, 981–997.

    PubMed  CAS  Google Scholar 

  34. Sparacio S., Pfeiffer T. 2001. Generation of a flexible cell line with regulatable, high-level expression of HIV Gag-pol particles capable of packaging HIV-derived vectors. Mol. Ther. 3, 602–612.

    PubMed  CAS  Google Scholar 

  35. Ikeda Y., Takeuchi Y. 2003. Continuous high-titer HIV-1 vector production. Nature Biotechnol. 21, 569–572.

    CAS  Google Scholar 

  36. Manilla P., Rebello T., Afable C., et al. 2005. Regulatory considerations for novel gene therapy products: A review of the process leading to the first clinical lentiviral vector. Hum. Gene Ther. 16, 17–25.

    PubMed  CAS  Google Scholar 

  37. Hanna Z., Kay D.G. 1998. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell. 95, 163–175.

    PubMed  CAS  Google Scholar 

  38. Bukrinsky M., Adzhubei A. 1999. Viral protein R of HIV-1. Rev. Med. Virol. 9, 39–49.

    PubMed  CAS  Google Scholar 

  39. Piguet V., Schwartz O. 1999. The downregulation of CD4 and MHC-I by primate lentiviruses: A paradigm for the modulation of cell surface receptors. Immunol. Rev. 168, 51–63.

    PubMed  CAS  Google Scholar 

  40. Camaur D., Trono D. 1996. Characterization of human immunodeficiency virus type 1 Vif particle incorporation. J. Virol. 70, 6106–6111.

    PubMed  CAS  Google Scholar 

  41. Pandori M.W., Fitch N.J. 1996. Producer-cell modification of human immunodeficiency virus type 1: Nef is a virion protein. J. Virol. 70, 4283–4290.

    PubMed  CAS  Google Scholar 

  42. Sato A., Yoshimoto J. 1996. Evidence for direct association of Vpr and matrix protein p17 within the HIV-1 virion. Virology. 220, 208–212.

    PubMed  CAS  Google Scholar 

  43. Dull T., Zufferey R. 1998. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  44. Rossi G.R., Mautino M.R. 2003. High-efficiency lentiviral vector-mediated gene transfer into murine macrophages and activated splenic B lymphocytes. Hum. Gene Ther. 14, 385–391.

    PubMed  CAS  Google Scholar 

  45. Chinnasamy D., Chinnasamy N. 2000. Lentiviral-mediated gene transfer into human lymphocytes: Role of HIV-1 accessory proteins. Blood. 96, 1309–1316.

    PubMed  CAS  Google Scholar 

  46. Kim V.N., Mitrophanous K. 1998. Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J. Virol. 72, 811–816.

    PubMed  CAS  Google Scholar 

  47. Gasmi M., Glynn J. 1999. Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J. Virol. 73, 1828–1834.

    PubMed  CAS  Google Scholar 

  48. Mautino M.R., Keiser N. 2000. Improved titers of HIV-based lentiviral vectors using the SRV-1 constitutive transport element. Gene Ther. 7, 1421–1424.

    PubMed  CAS  Google Scholar 

  49. Kotsopoulou E., Kim V.N. 2000. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J. Virol. 74, 4839–4852.

    PubMed  CAS  Google Scholar 

  50. Wagner R., Graf M. 2000. Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: Implications for the safety of lentiviral vectors. Hum. Gene Ther. 11, 2403–2413.

    PubMed  CAS  Google Scholar 

  51. Wu X., Wakefield J.K. 2000. Development of a novel trans-lentiviral vector that affords predictable safety. Mol. Ther. 2, 47–55.

    PubMed  CAS  Google Scholar 

  52. Cherepanov P., Pluymers W. 2000. High-level expression of active HIV-1 integrase from a synthetic gene in human cells. FASEB J. 14, 1389–1399.

    PubMed  CAS  Google Scholar 

  53. Corbeau P., Kraus G. 1998. Transduction of human macrophages using a stable HIV-1/HIV-2-derived gene delivery system. Gene Ther. 5, 99–104.

    PubMed  CAS  Google Scholar 

  54. Stitz J., Muhlebach M.D. 2001. A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology. 291, 191–197.

    PubMed  CAS  Google Scholar 

  55. Haapala D.K., Robey W.G. 1985. Isolation from cats of an endogenous type C virus with a novel envelope glycoprotein. J. Virol. 53, 827–833.

    PubMed  CAS  Google Scholar 

  56. Danos O., Mulligan R.C. 1988. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA. 85, 6460–6464.

    PubMed  CAS  Google Scholar 

  57. Reeves L., Duffy L. 2002. Detection of ecotropic replication-competent retroviruses: Comparison of s(+)/l(−) and marker rescue assays. Hum. Gene Ther. 13, 1783–1790.

    PubMed  CAS  Google Scholar 

  58. Escarpe P., Zayek N. 2003. Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol. Ther. 8, 332–341.

    PubMed  CAS  Google Scholar 

  59. Sastry L., Xu Y. 2003. Certification assays for HIV-1-based vectors: Frequent passage of gag sequences without evidence of replication-competent viruses. Mol. Ther. 8, 830–839.

    PubMed  CAS  Google Scholar 

  60. Hacein-Bey-Abina S., von Kalle C. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 302, 415–419.

    PubMed  CAS  Google Scholar 

  61. Bushman F., Lewinski M. 2005. Genome-wide analysis of retroviral DNA integration. Nature Rev. Microbiol. 3, 848–858.

    CAS  Google Scholar 

  62. Hacein-Bey-Abina S., von Kalle C. 2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256.

    PubMed  Google Scholar 

  63. Trono D. 2003. Virology. Picking the right spot. Science. 300, 1670–1671.

    PubMed  CAS  Google Scholar 

  64. Wu X., Li Y. 2003. Transcription start regions in the human genome are favored targets for MLV integration. Science. 300, 1749–1751.

    PubMed  CAS  Google Scholar 

  65. Cavazzana-Calvo M., Hacein-Bey S. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 288, 669–672.

    PubMed  CAS  Google Scholar 

  66. Schroder A.R., Shinn P. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110, 521–529.

    PubMed  CAS  Google Scholar 

  67. Han Y., Lassen K. 2004. Resting CD4 + T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133.

    PubMed  CAS  Google Scholar 

  68. Zufferey R., Dull T. 1998. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.

    PubMed  CAS  Google Scholar 

  69. Iwakuma T., Cui Y. 1999. Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology. 261, 120–132.

    PubMed  CAS  Google Scholar 

  70. Zaiss A.K., Son S. 2002. RNA 3′ readthrough of oncoretrovirus and lentivirus: Implications for vector safety and efficacy. J. Virol. 76, 7209–7219.

    PubMed  CAS  Google Scholar 

  71. Swain A., Coffin J.M. 1992. Mechanism of transduction by retroviruses. Science. 255, 841–845.

    PubMed  CAS  Google Scholar 

  72. Zhang Q.Y., Clausen P.A. 1998. Mutation of polyadenylation signals generates murine retroviruses that produce fused virus-cell RNA transcripts at high frequency. Virology. 241, 80–93.

    PubMed  CAS  Google Scholar 

  73. Page K.A., Landau N.R. 1990. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276.

    PubMed  CAS  Google Scholar 

  74. Landau N.R., Page K.A. 1991. Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J. Virol. 65, 162–169.

    PubMed  CAS  Google Scholar 

  75. Kavanaugh M.P., Miller D.G. 1994. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. USA. 91, 7071–7075.

    PubMed  CAS  Google Scholar 

  76. Akkina R.K., Walton R.M. 1996. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585.

    PubMed  CAS  Google Scholar 

  77. Naldini L., Blomer U. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272, 263–267.

    PubMed  CAS  Google Scholar 

  78. Altstein A.D., Zhdanov V.M., Omelchenko T.N., et al. 1976. Phenotypic mixing of vesicular stomatitis virus and D-type oncornavirus. Int. J. Cancer. 15, 780–784.

    Google Scholar 

  79. Schnitzer T.J., Weiss R.A., Zavada J. 1977. Pseudotypes of vesicular stomatitis virus with the envelope properties of mammalian and primate retroviruses. J. Virol. 23, 449–454.

    PubMed  CAS  Google Scholar 

  80. Burns J.C., Friedmann T. 1993. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA. 90, 8033–8037.

    PubMed  CAS  Google Scholar 

  81. Schlegel R., Tralka T.S. 1983. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site? Cell. 32, 639–646.

    PubMed  CAS  Google Scholar 

  82. Coil D.A., Miller A.D. 2004. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J. Virol. 78, 10920–10926.

    PubMed  CAS  Google Scholar 

  83. Aiken C. 1997. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J. Virol. 71, 5871–5877.

    PubMed  CAS  Google Scholar 

  84. Ory D.S., Neugeboren B.A. 1996. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA. 93, 11400–11406.

    PubMed  CAS  Google Scholar 

  85. Cronin J., Zhang X.Y. 2005. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387–398.

    PubMed  CAS  Google Scholar 

  86. Stein C.S., Martins I. 2005. The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol. Ther. 11, 382–389.

    PubMed  CAS  Google Scholar 

  87. Kobinger G.P., Weiner D.J. 2001. Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nature Biotechnol. 19, 225–230.

    CAS  Google Scholar 

  88. Verhoeyen E., Cosset F.L. 2004. Surface-engineering of lentiviral vectors. J. Gene Med. 6, 83–94.

    Google Scholar 

  89. Richard E., Mendez M. 2001. Gene therapy of a mouse model of protoporphyria with a self-inactivating erythroid-specific lentiviral vector without preselection. Mol. Ther. 4, 331–338.

    PubMed  CAS  Google Scholar 

  90. Cui Y., Golob J. 2002. Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood. 99, 399–408.

    PubMed  CAS  Google Scholar 

  91. De Palma M., Venneri M.A. 2003. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum. Gene Ther. 14, 1193–1206.

    PubMed  Google Scholar 

  92. Lai Z., Brady R.O. 2002. Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector. J. Neurosci. Res. 67, 363–371.

    PubMed  CAS  Google Scholar 

  93. Lu X., Humeau L. 2004. Safe two-plasmid production for the first clinical lentivirus vector that achieves >99% transduction in primary cells using a one-step protocol. J. Gene Med. 6, 963–973.

    PubMed  CAS  Google Scholar 

  94. Levine B.L., Humeau L.M. 2006. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA. 103, 17372–17377.

    PubMed  CAS  Google Scholar 

  95. Puthenveetil G., Scholes J. 2004. Successful correction of the human β-thalassemia major phenotype using a lentiviral vector. Blood. 1104, 3445–3453.

    PubMed  CAS  Google Scholar 

  96. Galimi F., Noll M. 2002. Gene therapy of Fanconi anemia: Preclinical efficacy using lentiviral vectors. Blood. 100, 2732–2736.

    PubMed  CAS  Google Scholar 

  97. Kordower J.H., Emborg M.E. 2000. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science. 290, 767–773.

    PubMed  CAS  Google Scholar 

  98. Consiglio A., Quattrini A. 2001. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: Correction of neuropathology and protection against learning impairments in affected mice. Nature Med. 7, 310–316.

    PubMed  CAS  Google Scholar 

  99. Stein C.S., Kang Y. 2001. In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther. 3, 850–856.

    PubMed  CAS  Google Scholar 

  100. Kobinger G.P., Louboutin J.P. 2003. Correction of the dystrophic phenotype by in vivo targeting of muscle progenitor cells. Hum. Gene Ther. 14, 1441–1449.

    PubMed  CAS  Google Scholar 

  101. Ikawa M., Tergaonkar V. 2002. Restoration of spermatogenesis by lentiviral gene transfer: Offspring from infertile mice. Proc. Natl. Acad. Sci. USA. 99, 7524–7529.

    PubMed  CAS  Google Scholar 

  102. Lois C., Hong E.J. 2002. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 295, 868–872.

    PubMed  CAS  Google Scholar 

  103. Pfeifer A., Ikawa M. 2002. Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. USA. 99, 2140–2145.

    PubMed  CAS  Google Scholar 

  104. Hamaguchi I., Woods N.B. 2000. Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J. Virol. 74, 10778–10784.

    PubMed  CAS  Google Scholar 

  105. Hofmann A., Kessler B. 2003. Efficient transgenesis in farm animals by lentiviral vectors. EMBO J. 4, 1054–1060.

    CAS  Google Scholar 

  106. McGrew M.J., Sherman A. 2004. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO J. 5, 728–733.

    CAS  Google Scholar 

  107. Pfeifer A. 2004. Lentiviral transgenesis. Transgenic Res. 13, 513–522.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Prassolov.

Additional information

Original Russian Text © P.V. Spirin, A.E. Vilgelm, V.S. Prassolov, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 5, pp. 913–926.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spirin, P.V., Vilgelm, A.E. & Prassolov, V.S. Lentiviral vectors. Mol Biol 42, 814–825 (2008). https://doi.org/10.1134/S002689330805018X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330805018X

Key words

Navigation