Skip to main content
Log in

Radius of gyration as an indicator of protein structure compactness

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Identification and study of the main principles underlying the kinetics and thermodynamics of protein folding generate a new insight into the factors that control this process. Statistical analysis of the radius of gyration for 3769 protein domains of four major classes (α, β, α/β, and α + β) showed that each class has a characteristic radius of gyration that determines the protein structure compactness. For instance, α proteins have the highest radius of gyration throughout the protein size range considered, suggesting a less tight packing as compared with β-and (α + β)-proteins. The lowest radius of gyration and, accordingly, the tightest packing are characteristic of α/β-proteins. The protein radius of gyration normalized by the radius of gyration of a ball with the same volume is independent of the protein size, in contrast to compactness and the number of contacts per residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finkelstein A.V., Badretdinov A.Ya. 1997. Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold. Fold. Des. 2, 115–121.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson S.E. 1998. How do small single-domain proteins fold? Fold. Des. 3, R81–R91.

    Article  PubMed  CAS  Google Scholar 

  3. Plaxco K.W., Simons K.W., Baker D. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994.

    Article  PubMed  CAS  Google Scholar 

  4. Galzitskaya O.V., Garbuzynskiy S.O., Ivankov D.N., Finkelstein A.V. 2003. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins. 51, 162–166.

    Article  PubMed  CAS  Google Scholar 

  5. Kuznetsov I.B., Rackovsky S. 2004. Class-specific correlations between protein folding rate, structure-derived, and sequence-derived descriptors. Proteins. 54, 333–341.

    Article  PubMed  CAS  Google Scholar 

  6. Ivankov D.N., Finkelstein A.V. 2004. Prediction of protein folding rates from the amino acid sequence-predicted secondary structure. Proc. Natl. Acad. Sci. USA. 101, 8942–8944.

    Article  PubMed  CAS  Google Scholar 

  7. Guijarro J.I., Morton C.J., Plaxco K.W., Campbell I.D., Dobson C.M. 1998. Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. J. Mol. Biol. 276, 657–667.

    Article  PubMed  CAS  Google Scholar 

  8. Plaxco K.W., Guijarro J.I., Morton C.J., Pitkeathly M., Campbell I.D., Dobson C.M. 1998. The folding kinetics and thermodynamics of the Fyn-SH3 domain. Biochemistry. 37, 2529–2537.

    Article  PubMed  CAS  Google Scholar 

  9. Perl D., Welker Ch., Schindler Th., Schroder K., Marahiel M.A., Jaenicke R., Schmid F.X. 1998. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nature Struct. Biol. 5, 229–235.

    Article  PubMed  CAS  Google Scholar 

  10. van Nuland N.A.J., Chiti F., Taddei N., Raugei G., Ramponi G., Dobson C.M. 1998. Slow folding of muscle acylphosphatase in the absence of intermediates. J. Mol. Biol. 283, 883–891.

    Article  PubMed  Google Scholar 

  11. Zerovnik E., Virden R., Jerala R., Turk V., Waltho J.P. 1998. On the mechanism of human stefin B folding: 1. Comparison to homologous stefin A. Influence of pH and trifluoroethanol on the fast and slow folding phases. Proteins. 32, 296–303.

    Article  PubMed  CAS  Google Scholar 

  12. Thirumalai D. 1995. From minimal models to real proteins: Time scales for protein folding kinetics. J. Phys. Orsay Fr. 5, 1457–1467.

    Article  CAS  Google Scholar 

  13. Gutin A.M., Abkevich V.I., Shakhnovich E.I. 1996. Chain length scaling of protein folding time. Phys. Rev. Lett. 77, 5433–5456.

    Article  PubMed  CAS  Google Scholar 

  14. Finkelstein A.V., Badretdinov A.Ya. 1997. Physical reason for fast folding of the stable spatial structure of proteins: A solution of the Levinthal paradox. Mol. Biol. 31, 391–398.

    CAS  Google Scholar 

  15. Koga N., Takada S. 2001. Roles of native topology and chain-length scaling in protein folding: A simulation study with a Go-like model. J. Mol. Biol. 313, 171–180.

    Article  PubMed  CAS  Google Scholar 

  16. Finkelstein A.V., Galzitskaya O.V. 2004. Physics of protein folding. Phys. Life Rev. 1, 23–56.

    Article  Google Scholar 

  17. Ivankov D.N., Garbuzynskiy S.O., Alm E., Plaxco K.W., Baker D., Finkelstein A.V. 2003. Contact order revisited: Influence of protein size on the folding rate. Protein Sci. 12, 2057–2062.

    Article  PubMed  CAS  Google Scholar 

  18. Istomin A.Y., Jacobs D.J., Livesay D.R. 2007. On the role of structural class of a protein with two-state folding kinetics in determining correlations between its size, topology, and folding rate. Protein Sci. 16, 2564–2569.

    Article  PubMed  CAS  Google Scholar 

  19. Punta M., Rost B. 2005. Protein folding rates estimated from contact predictions. J. Mol. Biol. 348, 507–512.

    Article  PubMed  CAS  Google Scholar 

  20. Parisien M., Major F. 2007. Ranking the factors that contribute to protein β-sheet folding. Proteins. 68, 824–829.

    Article  PubMed  CAS  Google Scholar 

  21. Lesk A.M., Chothia C. 1980. How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins. J. Mol. Biol. 136, 225–270.

    Article  PubMed  CAS  Google Scholar 

  22. Ptitsyn O.B., Volkenstein M.V. 1986. Protein structure and neutral theory of evolution. J. Biomol. Struct. Dynam. 4, 137–156.

    CAS  Google Scholar 

  23. Gerstein M., Sonnhammer E.L., Chothia C. 1994. Volume changes in protein evolution. J. Mol. Biol. 236, 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  24. Tsai J., Taylor T., Chothia C., Gerstein M. 1999. The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266.

    Article  PubMed  CAS  Google Scholar 

  25. Fleming P.J., Richards F.M. 2000. Protein packing: Dependence on protein size, secondary structure and amino acid composition. J. Mol. Biol. 299, 487–498.

    Article  PubMed  CAS  Google Scholar 

  26. Makarov D.E., Keller C.A., Plaxco K.W., Metiu H. 2002. How the folding rate constant of simple, singledomain proteins depends on the number of native contacts. Proc. Natl. Acad. Sci. USA. 99, 3535–3539.

    Article  CAS  Google Scholar 

  27. Galzitskaya O.V., Garbuzynskiy S.O. 2006. Entropy capacity determines protein folding. Proteins, 63, 144–154.

    Article  PubMed  CAS  Google Scholar 

  28. Galzitskaya O.V., Reifsnyder D.C., Bogatyreva N.C., Ivankov D.N., Garbuzynskiy S.O. 2008. More compact protein globules exhibit slower folding rates. Proteins, 70, 329–332.

    Article  PubMed  CAS  Google Scholar 

  29. Tsai C.J., Nussinov R. 1997. Hydrophobic folding units at protein-protein interfaces: Implications to protein folding and to protein-protein association. Protein Sci. 6, 1426–1437.

    Article  PubMed  CAS  Google Scholar 

  30. Tsai C.J., Nussinov R. 1997. Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Sci. 6, 24–42.

    Article  PubMed  CAS  Google Scholar 

  31. Winstanley H.F., Abeln S., Deane C.M. 2005. How old is your fold? Bioinformatics. 21, i449–i458.

    Article  PubMed  CAS  Google Scholar 

  32. Galzitskaya O.V., Bogatyreva N.S., Ivankov D.N. Compactness determines protein folding type. J. Bioinform. Comput. Biol. (in press).

  33. Murzin A.G., Brenner S.E., Hubbard T., Chothia C. 1995. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540.

    PubMed  CAS  Google Scholar 

  34. Hudson D.J. 1964. Statistics: Lectures on Elementary Statistics and Probability. Geneva: CERN.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya.

Additional information

Original Russian Text © M.Yu. Lobanov, N.S. Bogatyreva, O.V. Galzitskaya, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 4, pp. 701–706.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobanov, M.Y., Bogatyreva, N.S. & Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol Biol 42, 623–628 (2008). https://doi.org/10.1134/S0026893308040195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893308040195

Key words

Navigation