Skip to main content
Log in

Method of Estimating the Integral Roundness Index for Detrital Zircons: A Case Study of Cimmeride Sedimentary Sequences in the Crimean Mountains

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

A technique to evaluate the degree of roundness of detrital zircons on a 5-point scale based on the preservation of crystal vertices, edges, and faces is presented. Based on measurements in individual grains, the integral roundness index Rs is calculated for a zircon grain set from various stratigraphic units. The obtained data make it possible to determine the proportion of different class grains in various sequences and to assess their similarity/difference degree, which can serve as an additional criterion for the differentiation of sedimentary sections. The proposed method is used to compare the roundness characteristics of detrital zircons from some Cimmeride sedimentary sequences in the Crimean Mountains. It is shown that relative to counterparts in the flysch sequences, sandstones of the Chenka sequence are characterized by a higher proportion of unrounded and weakly rounded zircons and a virtual absence of completely rounded grains. Value of Rs for the zircon grain set ranges from 3.41 and 3.95 for the Tauric Group to 2.55 for the Chenka sequence. Thus, Rs values in the sequences are marked by a significant difference, which is also confirmed by values of the mutual pair coefficient p calculated using the Kolmogorov–Smirnov test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. If the grain has a non-convex shape, the software will construct a convex shell. The convex shell of data N of plane points designates the minimal (in area) convex polygon including all data points. Correspondingly, parameter Ps is calculated for this convex shell. Parameter Р designates the real grain perimeter. If the grain has a convex shape, P and Ps are one and the same.

REFERENCES

  1. Abdulla, D., Structure of the Kacha anticlinorium, Crimean Mountains, Vestn. Leningr. Univ. Ser. Geol. Geograf., 1968., no. 18, pp. 40–50.

  2. Atlas tekstur i struktur osadochnykh gornykh porod (Atlas of Structures and Textures of Sedimentary Rocks), Khabakov, A.V., Ed., Moscow: Gosgeoltekhizdat, 1962, vol. 1 (Clastic and Clayey Rocks).

  3. Barkhatov, B.P., Relationship between the Tauric and Eski-Orda Formations in the Crimean Mountains, Vestn. Leningr. Univ., 1955, no. 7, pp. 123–135.

  4. Beat, M.A. and Shepard, F.P., A use of roundness to determine depositional environments, J. Sediment. Petrol., 1956, no. 26, pp. 49–60.

  5. Belousova, E.A., Griffin, W.L., and O’Reilly, S.Y., Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids, J. Petrol., 2006, vol. 47, no. 2, pp. 329–353.

    Article  CAS  Google Scholar 

  6. Benn, D.I. and Ballantyne, C.K., The description and representation of particle shape, Earth Surf. Proc. Landforms, 1993, no. 18, pp. 665–672.

  7. Blott, S.J. and Pye, K., Particle shape: a review and new methods of characterization and classification, Sedimentology, 2008, vol. 55, pp. 31–63.

    Article  Google Scholar 

  8. Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., Detrital zircon record and tectonic setting, Geology, 2012, vol. 40, no. 10, pp. 875–878.

    Article  Google Scholar 

  9. Corfu, F., Hanchar, J.M., Hoskin, P.-W.O., and Kinny, P., Atlas of zircon textures, Rev. Miner. Geochem., 2003, vol. 53, no. 1, pp. 469–500.

  10. Crofts, R.S., A visual measure of single particle form for use in the field, J. Sedim. Petrol., 1974, vol. 46, pp. 931–934.

    Google Scholar 

  11. Davis, D.W., Williams, I.S., and Krogh, T.E., Historical development of U–Pb geochronology, in Rev. Miner. Geochem., Hanchar, J.M. and Hoskin, P.W.O., Eds., 2003, vol. 53, pp. 145–181.

    Google Scholar 

  12. Dickinson, W.R. and Gehrels, G.E., Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database, Earth Planet. Sci. Lett., 2009, vol. 288, no. 1, pp. 115–125.

    Article  CAS  Google Scholar 

  13. Fikolina, L.A., Beletskii, S.V., Belokrys, O.A., Derenyuk, D.N., Krasnorudskaya, S.I., Obsharskaya, N.N., Korol, B.I., Ivakin, M.N., Shevchuk, N.V., Dyachenko, L.N., Averina, V.N., Peresad’ko, I.N., Pupysheva, V.G., and Sevast’yanova, V.P., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (State Geological Map of the Russian Federation, Scale 1 : 1 000 000), Ser. Scythian Region, Sheet L-36, St. Petersburg: VSEGEI, 2019.

  14. Fisher, P.F. and Bridgland, D.R., Analysis of pebble morphology, in Clast Lithological Analysis, Bridgland, D.R., Ed., Cambridge: Quat. Res. Ass., 1986, pp. 43–72.

    Google Scholar 

  15. Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S., and Valley, J.W., Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia, Chem. Geol., 2009, vol. 259, pp. 131–142.

    Article  CAS  Google Scholar 

  16. Gehrels, G.E., Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, Spec. Pap. Geol. Soc. Am., 2000, no. 347, pp. 1–17.

  17. Gehrels, G.E., Detrital zircon U–Pb geochronology applied to tectonics, Ann. Rev. Earth Planet. Sci., 2014, vol. 42, no. 1, pp. 127–149.

    Article  CAS  Google Scholar 

  18. Geologicheskoe stroenie Kachinskogo podnyatiya Gornogo Kryma. Stratigrafiya mezozoya (Geological Structure of the Kacha Uplift in the Crimean Mountains: Mesozoic Stratigraphy), Mazarovich, O.A. and Mileev, V.S., Eds., Moscow: MGU, 1989.

    Google Scholar 

  19. Gornaya entsiklopediya (Mining Enclyclopedia), Kozlovskii, E.E., Ed., Moscow: Sov. Entsikl., 1987, vol. 3.

    Google Scholar 

  20. Griffiths, J.C. and Currey, J.R., Sphericity and roundness of quartz grains, Geol. Soc. Am. Bull., 1955, vol. 66, pp. 1075–1096.

    Article  Google Scholar 

  21. Guynn, J. and Gehrels, G.E., Comparison of Detrital Zircon Age Distributions in the K-S Test, Tucson: Univ. Arizona, Arizona LaserChron Center, 2010.

    Google Scholar 

  22. International Chronostratigraphic Chart, in Int. Comm. Stratigr., 2020, http://www.stratigraphy.org/ICSchart/ ChronostratChart2020-01.pdf.

  23. Kaulina, T.V., Obrazovanie i preobrazovanie tsirkona v polimetamorficheskikh kompleksakh (Formation and Transformation of Zircon in Polymetamorphic Complexes), Apatity: Kola Nauchn. Tsentr RAN, 2010.

  24. Khabakov, A.V., Kratkaya instruktsiya dlya polevogo issledovaniya konglomeratov (Brief Instruction for the Field Study of Conglomerates), Leningrad: Gosgeolrazv., 1933.

  25. Khabakov, A.V., Roundness index of pebblestones, Sov. Geol., 1946., no. 10, pp. 17–32.

  26. Klikushin, V.G., Triassic and Early Jurassic Crinoidea in Crimea, Byull. MOIP. Otd. Geol., 1988, vol. 63, no. 6, pp. 71–79.

    Google Scholar 

  27. Krumbein, W.C., Measurement and geological significance of shape and roundness of sedimentary particles, J. Sedim. Petrol., 1941, vol. 11, no. 2, pp. 64–72.

    Article  CAS  Google Scholar 

  28. Kukharenko, A.A., Quantitative analysis of the shape of pebbles from ancient alluvium in the Koiva River, Sov. Geol., 1947, no. 18, pp. 146–155.

  29. Kuznetsov, N.B., Romanyuk, T.V., Nikishin, A.M., Strashko, A.V., Kolesnikova, A.A., Dubenskiy, A.S., Sheshukov, V.S., Lyapunov, S.M., Novikova, A.S., and Moskovsky, D.V., Provenance of the Upper Triassic–Lower Jurassic flysch and the Middle–Upper Jurassic coarse clastic sequences in the Cimmerides of the Crimean Mountains Based on the results of U–Th–Pb isotopic dating of detrital zircon grains, Strat. Geol. Correl., 2022a, vol. 30, no. 4, pp. 228–249. https://doi.org/10.31857/S0869592X22040056

    Article  Google Scholar 

  30. Kuznetsov, N.B., Romanyuk, T.V., Strashko, A.V., and Novikova, A.S., Ophiolite association of Cape Fiolent (western Crimean Mountains) – an upper age limit based on U-Pb isotope dating of plagiorhyolites (rock Monakh), Zap. Gorn. Inst., 2022b, vol. 255, pp. 435–447. https://doi.org/10.31897/PMI.2022.37

    Article  Google Scholar 

  31. Kuznetsov, N.B., Strashko, A.V., Romanyuk, T.V., Nikishin, A.M., Moskovskii, D.V., Novikova, A.S., Dubenskii, A.S., and Sheshukov, V.S., Results of the U–Th–Pb dating of detrital zircon grains from the Chenka sandstones: Contribution to stratigraphy of Cimmerides in the Crimean Mountains, Stratigr. Geol. Correl., 2024, no. 3, pp. 265–293.

  32. Kuznetsov, N.B., Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Romanyuk, T.V., and Rud’ko, S.V., Pre-Mesozoic Crimea as a continuation of the Dobrogea Platform: Insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea, Int. J. Earth Sci., 2019, vol. 108, no. 7, pp. 2407–2428.

  33. Logvinenko, N.V., Karpova, T.V., and Shaposhnikov, D.P., Litologiya i genezis tavricheskoi formatsii Kryma (Lithology and Genesis of the Tauric Formation in Crimea), Khar’kov: Khar’kov. Univ., 1961.

  34. Maslov, A.V., Osadochnye porody: metody izucheniya i interpretatsii poluchennykh dannykhUchebnoe posobie (Sedimentary Rocks: Methods for Their Study and Data Interpretation – A Manual), Yekaterinburg: UGGU, 2005.

  35. Muratov, M.V., Tectonics and evolution history of the Alpine geosynclinal region in the southern European part of the Soviet Union and adjacent countries, Tektonika SSSR (Tectonics of the Soviet Union), Moscow: AN SSSR, 1949, vol. 2.

    Google Scholar 

  36. Nachtergaele, S. and De Grave, J., AI-Track-tive: open-source software for automated recognition and counting of surface semi-tracks using computer vision (artificial intelligence), Geochronology, 2021, vol. 3, no. 1, pp. 383–394.

    Article  CAS  Google Scholar 

  37. Nikishin, A.M., Wannier, M., Alekseev, A.S., Almendinger, O.A., Fokin, P.A., Gabdullin, R.R., Khudoley, A.K., Kopaevich, L.F., Mityukov, A.V., Petrov, E.I., and Rubsova, E.V., Mesozoic to recent geological history of southern Crimea and the eastern Black Sea region, in Tectonic Evolution of the Eastern Black Sea and Caucasus, Geol. Soc. London Spec. Publ., 2015, vol. 428, pp. 241‒264.

    Article  Google Scholar 

  38. Nikishin, A.M., Makhatadze, G.V., Gabdullin, R.R. Khudolei, A.K., and Rubtsova, E.V., Bitak conglomerates as a clue for understanding the Middle Jurassic geological history of Crimea, Mosc. Univ. Geol. Bull., 2017, no. 1, pp. 18–27.

  39. Nikishin, A.M., Romanyuk, T.V., Moskovskii, D.V., Kuznetsov, N.B., Kolesnikova, A.A., Dubenskii, A.S., Sheshukov, V.S., and Lyapunov, S.M., Upper Triassic sequences of the Crimean Mountains: First results of U–Pb dating of detrital zircons, Mosc. Univ. Geol. Bull., 2020, vol. 75, no.3, pp. 220–236. https://doi.org/10.3103/S0145875220030096

    Article  Google Scholar 

  40. Panov, D.I., The Chenka Formation (Lower Jurassic) in southwestern Crimea: Problems of the stratigraphic position and age, Byull. MOIP. Otd. Geol., 2015. vol. 90, no. 4, pp. 31–41.

    Google Scholar 

  41. Panov, D.I., Burkanov, E.I., Gaiduk, V.V., and Il’kevich, D.G., New data on the geology of Triassic and Lower Jurassic deposits between the Marta and Bodraka rivers (southwestern Crimean Mountains), Vestn. MGU, Ser. Geol., 1978, no. 1, pp. 47–55.

  42. Panov, D.I., Bolotov, S.N., Samarin, E.N., and Gostev, M.Yu., Hiatuses in Triassic—Jurassic sections in the Crimean Mountains and their historical-geological significance, Vestn. MGU, Ser. Geol., 2004, no. 2, pp. 21–31.

  43. Panov, D.I., Panchenko, I.V., and Kosorukov V.L., The Lower Tauric Suite (Upper Triassic) in the Kacha anticline uplift of Mountainous Crimea, Mosc. Univ. Geol. Bull., 2011, no. 2, pp. 84–93.

  44. Pettijohn, F.J., Sedimentary Rocks, New York: Harper and Brothers, 1957.

    Google Scholar 

  45. Pettke, T., Audetat, A., Schaltegger, U., and Heinrich, C.A., Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia) - Part II: evolving zircon and thorite trace element chemistry, Chem. Geol., 2005, vol. 220, pp. 191–213.

    Article  CAS  Google Scholar 

  46. Powers, M.S., A new roundness scale for sedimentary particles, J. Sedim. Petrol., 1953, vol. 23, pp. 117–119.

    Article  Google Scholar 

  47. Ramezani, J., Dunning, G.R., and Wilson, M.R., Geologic setting, geochemistry of alteration, and U–Pb age of hydrothermal zircon from the Silurian Stog’er Tight gold prospect, Newfoundland Appalachians, Canada, Explor. Min. Geol., 2000, vol. 9, pp. 171–188.

    Article  CAS  Google Scholar 

  48. Romanyuk, T.V., Kuznetsov, N.B., Rud’ko, S.V., Kolesnikova, A.A., Moskovsky, D.V., Dubensky, A.S., Sheshukov, V.S., and Lyapunov, S.M., Stages of Carboniferous–Triassic magmatism in the Black Sea region based on isotope-geochronological study of detrital zircons from Jurassic coarse-clastic strata of the Mountainous Crimea, Geodinam. Tektonofiz., 2020, no.3, pp. 453–473.

  49. Rubatto, D., Zircon: The metamorphic mineral, Rev. Miner. Geochem., 2017, vol. 83, no. 1, pp. 261–295.

    Article  CAS  Google Scholar 

  50. Rubin, J.N., Henry, C.D., and Price, J.G., Hydrothermal zircons and zircon overgrowths, Sierra-Blanca Peaks, Texas, Am. Miner., 1989, vol. 74, pp. 865–869.

    CAS  Google Scholar 

  51. Rubin, J.N., Henry, C.D., and Price, J.G., The mobility of zirconium and other “immobile” elements during hydrothermal alteration, Chem. Geol., 1993, vol. 110, nos. 1–3, pp. 29–47.

    Article  CAS  Google Scholar 

  52. Rud’ko, S.V., Kuznetsov, N.B., Romanyuk, T.V., and Belousova, E.A., Structure and the age of conglomerates of Mount Southern Demerdzhi based on the first U/Pb-dating of detrital zircons (Upper Jurassic, Crimean Mountains), Dokl. Earth Sci., 2018, vol. 483, no. 1, pp. 1423‒1426. https://doi.org/10.1134/S1028334X18110223

    Article  Google Scholar 

  53. Rud’ko, S.V., Kuznetsov, N.B., Belousova, E.A., and Romanyuk, T.V., Age, Hf-isotope systemantic of detritial zircons and the source of conglomerates of the Southern Demerdzhi Mountain, Mountainous Crimea, Geotectonics, 2019, vol. 53, no. 5, pp. 569–587. https://doi.org/10.1134/S0016852119050042

    Article  Google Scholar 

  54. Rukhin, L.B., Osnovy litologii (Principles of Lithology), Leningrad, 1969.

  55. Russell, R.D. and Taylor, R.E., Roundness and shape of Mississippi River sands, J. Geol., 1937, vol. 45, pp. 225–267.

    Article  Google Scholar 

  56. Schaltegger, U., Pettke, T., Audétat, A., Reusser, E., and Heinrich, C.A., Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia). Part I: crystallization of zircon and REE-phosphates over three million years – a geochemical and U–Pb geochronological study, Chem. Geol., 2005, vol. 220, pp. 215–235.

    Article  CAS  Google Scholar 

  57. Shvanov, V.N., Lithostratigraphy and structure of the Tauric Formation in the Bodrak River basin, Crimea, Vestn. Leningr. Univ. Ser. Geol. Geogr., 1966, vol. 1, no. 6, pp. 153–156.

  58. Shvanov, V.N., Peschanye porody i metody ikh izucheniya (Sandy Rocks and Methods for Their Study), Leningrad: Nedra, 1969.

  59. Stafeev, A.N., Sukhanova, T.V., Latysheva, I.V., Kosorukov, V.L., Rostovtseva, Yu.I., and Smirnova, S.B., The Chenka sandstone sequence (Lower Jurassic) of the Crimean Mountains: Stratigraphy and depositional environments, Mosc. Univ. Geol. Bull., 2014., no. 6, pp. 308–316.

  60. Tevelev, A.V., Kovarskaya, V.E., and Tatarinova, D.S., Lithology, spore-pollen spectra, and conditions of formation of deposits of the Chenka Formation of the Southwest Crimea, Mosc. Univ. Geol. Bull., 2012., no. 2, pp. 93–102.

  61. Vasil’eva, L.B., Stratigraphic subdivision of the Tauric Formation in the Crimean Mountains, Byull. MOIP. Otd. Geol., 1952. vol. 27(5), pp. 53–79.

    Google Scholar 

  62. Wadell, H., Volume, shape and roundness of rock particles, J. Geol., 1932, vol. 40, no. 5.

  63. Wadell, H., Sphericity and roundness of rock particles, J. Geol., 1933, vol. 41, no. 3.

  64. Yang, G., Chen, R.-X., Zheng, Y.-F., Xia, Q.-X., Yu, Y.-J., Li, K., Hu, Z., Gong, B., and Zha, X.-P., Multiple episodes of zircon growth during anatectic metamorphism of metasedimentary rocks in collisional orogens: Constraints from felsic granulites in the Bohemian Massif, J. Earth Sci., 2023, vol. 34, no. 3, pp. 609–639.

    Article  Google Scholar 

Download references

Funding

This work was carried out in accordance with the State Task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. The semi-automatic analysis of the morphology of zircon grains was performed on equipment purchased under agreement no. 075-15-2022-299 under the development program “Rational Development of Liquid Hydrocarbon Reserves of the Planet” of the National Research Center of the Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Romanyuk or P. D. Kotler.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Sakya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanyuk, T.V., Kotler, P.D. Method of Estimating the Integral Roundness Index for Detrital Zircons: A Case Study of Cimmeride Sedimentary Sequences in the Crimean Mountains. Lithol Miner Resour 59, 299–313 (2024). https://doi.org/10.1134/S0024490224700524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490224700524

Keywords:

Navigation