Skip to main content
Log in

Kinetic study of spiramycin removal from aqueous solution using heterogeneous photocatalysis

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Spiramycin macrolide antibiotic (SPM) can be photocatalytically degraded on TiO2 (anatase variety). The experiments are done in a batch reactor and the effect of some key parameters is investigated under low energy of artificial UV light. The reaction rate is affected by varying TiO2 dose, pH and SPM concentration. Under optimized conditions, a photodegradation efficiency of 98% is achieved and the SPM photodegradation follows pseudo-first order kinetics. The Langmuir–Hinshelwood (L–H) model is successfully used to fit the experimental data, indicating the dependence of the reaction rate on the chemical reaction step. The L–H model led to the determination of both reaction kinetic and adsorption/desorption equilibrium constants. In order to give an overall estimate of the by-products, chemical oxygen demand, total organic carbon, and calculated average oxidation state monitor the photodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gracia-Lor, E., Sancho, J.V., Serrano, R., and Hernández, F., Chemosphere, 2012, vol. 87, p. 453.

    Article  CAS  Google Scholar 

  2. Heberer, T., Toxicol. Lett, 2002, vol. 131, p. 5.

    Article  CAS  Google Scholar 

  3. Hirsch, R., Ternes, T., Haberer, K., and Kratz, K.L., Sci. Total Environ., 1999, vol. 225, p. 109.

    Article  CAS  Google Scholar 

  4. Ullah, Z., Khan, H., Waseem, A., Mahmood, Q., and Farooq, U., J. Water Chem. Technol., 2013, vol. 35, p. 170.

    Article  Google Scholar 

  5. Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C., and FattaKassinos, D., Water Res., 2013, vol. 47, p. 957.

    Article  CAS  Google Scholar 

  6. Ternes, T.A., Water Res., 1998, vol. 32, p. 3245.

    Article  CAS  Google Scholar 

  7. Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., and Fanelli, R., J. Hazard. Mater., 2010, vol. 179, p. 1042.

    Article  CAS  Google Scholar 

  8. Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., Holten Lützhøft, H.C., and Jørgensen, S.E., Chemosphere, 1998, vol. 36, p. 357.

    Article  Google Scholar 

  9. Kummerer, K., Al-Ahmad, A., and MerschSundermann, V., Chemosphere, 2000, vol. 40, p. 701.

    Article  CAS  Google Scholar 

  10. Civitareale, C., Fiori, M., Ballerini, A., and Brambilla, G., J. Pharm. Biomed. Anal., 2004, vol. 36, p. 317.

    Article  CAS  Google Scholar 

  11. Chen, M. and Chu, W., J. Hazard. Mater., 2012, vol. 183, p. 219.

    Google Scholar 

  12. Elmolla, E.S. and Chaudhuri, M., J. Hazard. Mater., 2009, vol. 172, p. 1476.

    Article  CAS  Google Scholar 

  13. Kim, K.S., Yang, C.S., and Mok, Y.S., Chem. Eng. J., 2013, vol. 219, p. 19.

    Article  CAS  Google Scholar 

  14. Kochkodan, V.M., Rolya, E.A., and Goncharuk, V.V., J. Water Chem. Technol., 2009, vol. 31, no. p.227.

    Article  Google Scholar 

  15. Nasuhoglu, D., Rodayan, A., Berk, D., and Yargeau, V., Chem. Eng. J., 2012, vol. 189, p. 41.

    Article  Google Scholar 

  16. Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., and Ismadji, S., Water Res., 2009, vol. 43, p. 2419.

    Article  CAS  Google Scholar 

  17. Darwich, C., Elkhatib, M., Steinhauser, G., and Delalu, H., Kinet. Catal., 2009, vol. 50, p. 103.

    Article  CAS  Google Scholar 

  18. Moghaddam, S.K., Rasoulifard, M., Vahedpour, M., and Eskandarian, M., Korean J. Chem. Eng., 2014, vol. 31, p. 1577.

    Article  CAS  Google Scholar 

  19. Doll, T.E. and Frimmel, F.H., Catal. Today, 2005, vol. 101, p. 195.

    Article  CAS  Google Scholar 

  20. Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.G., and Parmon, V.N., Kinet. Catal., 2005, vol. 46, p. 189.

    Article  CAS  Google Scholar 

  21. Pronin, I.A., Kaneva, N.V., Bozhinova, A.S., Averin, I.A., Papazova, K.I., Dimitrov, D.T., and Moshnikov, V.A., Kinet. Catal., 2014, vol. 55, p. 167.

    Article  CAS  Google Scholar 

  22. Yang, H., Li, G., An, T., Gao, Y., and Fu, J., Catal. Today, 2010, vol. 153, p. 200.

    Article  CAS  Google Scholar 

  23. Chong, M.N., Jin, B., Chow, C.W.K., and Saint, C., Water Res., 2010, vol. 44, p. 2997.

    Article  CAS  Google Scholar 

  24. Gaya, U.I. and Abdullah, A.H., J. Photochem. Photobiol. C, 2008, vol. 9, p. 1.

    Article  CAS  Google Scholar 

  25. Parra, S., Olivero, J., and Pulgarin, C., Appl. Catal. B, 2002, vol. 36, p. 75.

    Article  CAS  Google Scholar 

  26. Gad-Allah, T.A., Ali, M.E., and Badawy, M.I., J. Hazard. Mater., 2011, vol. 186, p. 751.

    Article  CAS  Google Scholar 

  27. Kaniou, S., Pitarakis, K., Barlagianni, I., and Poulios, I., Chemosphere, 2005, vol. 60, p. 372.

    Article  CAS  Google Scholar 

  28. Galindo, C., Jacques, P., and Kalt, A., Chemosphere, 2001, vol. 45, p. 997.

    Article  CAS  Google Scholar 

  29. Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., and Gernjak, W., Catal. Today, 2009, vol. 147, p. 1.

    Article  CAS  Google Scholar 

  30. Abellán, M., Bayarri, B., Giménez, J., and Costa, J., Appl. Catal. B, 2007, vol. 74, p. 233.

    Article  Google Scholar 

  31. Sakkas, V., Calza, P., Medan, C., Villioti, A.E., Baiocchi, C., Pelizzetti, E., and Albanis, T., Appl. Catal. B, 2007, vol. 77, p. 135.

    Article  CAS  Google Scholar 

  32. Chu, W., Choy, W., and So, T., J. Hazard. Mater., 2007, vol. 141, p. 86.

    Article  CAS  Google Scholar 

  33. Haque, M. and Muneer, M., J. Hazard. Mater., 2007, vol. 145, p. 51.

    Article  CAS  Google Scholar 

  34. Kumar, K.V., Porkodi, K., and Rocha, F., Catal. Commun., 2008, vol. 9, p. 82.

    Article  CAS  Google Scholar 

  35. Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis, T., and Poulios, I., Water Res., 2008, vol. 42, p. 386.

    Article  CAS  Google Scholar 

  36. Dimitrakopoulou, D., Rethemiotaki, I., Frontistis, Z., Xekoukoulotakis, N.P., Venieri, D., and Mantzavinos, D., J. Environ. Manage., 2012, vol. 98, p. 168.

    Article  CAS  Google Scholar 

  37. Reyes, C., Fernández, J., Freer, J., Mondaca, M.A., Zaror, C., Malato, S., and Mansilla, H.D., J. Photochem. Photobiol. A, 2006, vol. 184, p. 141.

    Article  CAS  Google Scholar 

  38. Palominos, R., Mora, A., Mondaca, M.A., PérezMoya, M., and Mansilla, H.D., J. Hazard. Mater., 2008, vol. 158, p. 460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounnar, A., Favier, L., Bouzaza, A. et al. Kinetic study of spiramycin removal from aqueous solution using heterogeneous photocatalysis. Kinet Catal 57, 200–206 (2016). https://doi.org/10.1134/S0023158416020087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416020087

Keywords

Navigation