Skip to main content
Log in

Phase formation in mixed TiO2-ZrO2 oxides prepared by sol-gel method

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Pure titania, zirconia, and mixed oxides (3–37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3–13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700°C. The mixed oxide with 37 mol.% of ZrO2 treated at 550°C shows a new single amorphous phase with a surface area of the nanoparticles double with respect to the other crystalline samples and the formed srilankite structure (at 700°C). The anatase phase is not observed in the sample containing 37 mol.% of ZrO2. The treatment at 700°C causes the formation of the srilankite (Ti0.63Zr0.37Ox) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. D. Hernandez-Alonso, I. Tejedor-Tejedor, J. M. Coronado, et al., Thin Solid Film, 50, 2125–2131 (2006).

    Google Scholar 

  2. J. Aguado, R. van Grieken, M.-J. Lopez-Munoz, and J. Marugan, Appl. Catal. A: Gen., 312, 202–212 (2006).

    Article  CAS  Google Scholar 

  3. J. Luka, M. Klementova, P. Bezdicka, et al., Appl. Catal. B: Environ., 74, 83–91 (2007).

    Article  Google Scholar 

  4. Y. M. Wang, S. W. Liu, M. K. Lu, et al., J. Mol. Catal. A: Chem., 215, 137–142 (2004).

    Article  CAS  Google Scholar 

  5. I. Djerdj, D. Arcon, Z. Jaglicic, and M. Niederberger, J. Solid State Chem., 181, 1571–1581 (2008).

    Article  CAS  Google Scholar 

  6. S. Anandan and M. Yoon, J. Photochem. Photobiol. C: Photochem., 4, 5–18 (2003).

    Article  CAS  Google Scholar 

  7. A. Jitianu, T. Cacciaguerra, R. Benoit, et al., Carbon, 42, 1147–1151 (2004).

    Article  CAS  Google Scholar 

  8. T. Torimoto, Y. Okawa, N. Takeda, et al., Photobiol. A: Photochem., 103, 153–157 (1997).

    Article  CAS  Google Scholar 

  9. X. Z. Fu, L. A. Clark, Q. Yang, and M. A. Anderson, Environ. Sci. Technol., 30, 647–653 (1996).

    Article  CAS  Google Scholar 

  10. G. Colon, M. C. Hidalgo, and J. A. Navıo, Appl. Catal. A: Gen., 231, 185–199 (2002).

    Article  CAS  Google Scholar 

  11. J. H. Schattka, D. G. Shchukin, J. Jia, et al., Chem. Mater., 14, 5103–5108 (2002).

    Article  CAS  Google Scholar 

  12. M. Hirano, C. Nakahara, K. Ota, et al., J. Solid State Chem., 170, 39–47 (2003).

    Article  CAS  Google Scholar 

  13. T. Isobe, S. Komatsubara, and M. Senna, Nippon Kagaku Kaishi, 1361 (1991).

  14. T. Isobe, S. Komatsubara, and M. Senna, J. Non-Cryst. Solids, 150, 144–147 (1992).

    Article  CAS  Google Scholar 

  15. T. M. Twesme, D. T. Tompkins, M. A. Anderson, and Th. W. Root, Appl. Catal. B: Enveronmental., 64, 153–160 (2006).

    Article  CAS  Google Scholar 

  16. J. K. Youl and P. S. Bin, Korean Journal of Chemical Engineering, 18, No. 6, 879–888 (2001).

    Article  Google Scholar 

  17. R. A. Young (ed.), in: The Rietveld Method, University Press, Oxford (1993).

    Google Scholar 

  18. L. Lutterotti and S. Gialanella, Acta Mater., 46, 101–110 (1998).

    Article  CAS  Google Scholar 

  19. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309–315 (1938).

    Article  CAS  Google Scholar 

  20. Yashima and Tsunekawa, Acta Cryst. B, 62, 161–164 (2006).

    Article  Google Scholar 

  21. A. Willgallis and H. Hartl, Zeitschr Kristallogr, Crystal Research, Technology, 24, No. 3, 263–268 (1989).

    Google Scholar 

  22. L. Sham Edgardo, A. G. Aranda Miguel, Farfan-Torres E. Mynica, et al., J. Solid State Chem., 139, 225–232 (1998).

    Article  Google Scholar 

  23. Kyeong Youl Jung and Seung Bin Park, Materials Lett., 58, 2897–2900 (2004).

    Article  CAS  Google Scholar 

  24. I. R. Beattie and T. R. Gilson, J. Chem. Soc. A, 2322–2329 (1969).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kraleva.

Additional information

Original Russian Text Copyright © 2011 by E. Kraleva, M. L. Saladino, R. Matassa, E. Caponetti, S. Enzo, and A. Spojakina

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 2, pp. 340–348, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraleva, E., Saladino, M.L., Matassa, R. et al. Phase formation in mixed TiO2-ZrO2 oxides prepared by sol-gel method. J Struct Chem 52, 330–339 (2011). https://doi.org/10.1134/S0022476611020132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611020132

Keywords

Navigation