Skip to main content
Log in

Photoreceptors and visual pigments in three species of newts

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Photoreceptor composition and retinal visual pigments in three newt (Caudata, Salamandridae, Pleurodelinae) species (Pleurodeles waltl, Lissotriton (Triturus) vulgaris, and Cynops orientalis) were studied by light microscopy and single-cell microspectrophotometry. Retinas of all three species contain “red” (rhodopsin/porphyropsin) rods, large and small single cones, and double cones. Large single cones and both components of double cones contain red-sensitive (presumably LWS) visual pigment whose absorption spectrum peaks between 593 and 611 nm. Small single cones are either blue- (SWS2, maximum absorption between 470 and 489 nm) or UV-sensitive (SWS1, maximum absorption between 340 and 359 nm). Chromophore composition of visual pigments (A1 vs. A2) was assessed both from template fitting of absorption spectra and by the method of selective bleaching. All pigments contained a mixture of A1 (11-cis retinal) and A2 (11-cis-3,4-dehydroretinal) chromophore in the proportion depending on the species and cell type. In all cases, A2 was dominant. However, in C. orientalis rods the fraction of A1 could reach 45%, while in P. waltl and L. vulgaris cones it did not exceed 5%. Remarkably, the absorption of the newt blue-sensitive visual pigment was shifted by up to 45 nm toward the longer wavelength, as compared with all other amphibian SWS2-pigments. We found no “green” rods typical of retinas of Anura and some Caudata (ambystomas) in the three newt species studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohun, S.M., Davies, W.L., Bowmaker, J.K., Pisani, D., Himstedt, W., Gower, D.J., Hunt, D.M., and Wilkinson, M., Identification and Characterization of Visual Pigments in Caecilians (Amphibia: Gymnophiona), an Order of Limbless Vertebrates with Rudimentary Eyes, J. Exp. Biol., 2010, vol. 213, pp. 3586–3592.

    Article  PubMed  CAS  Google Scholar 

  2. Walls, G.L., The Vertebrate Eye and Its Adaptive Radiation, Bloomfield Hills, Mich. Cranbrook Institute of Science, 1942, 785 p.

    Google Scholar 

  3. Crescitelli, F., The Visual Cells and Visual Pigments of the Vertebrate Eye, Handbook of Sensory Physiology, vol. VII/1, Dartnall, H.J.A., Ed., Berlin-Heidelberg-New York: Springer Verlag, 1972, pp. 245–363.

    Google Scholar 

  4. Sherry, D.M., Bui, D.D., and DeGrip, W.J., Identification and Distribution of Photoreceptor Subtypes in the Neotenic Tiger Salamander Retina, Vis. Neurosci., 1998, vol. 15, no. 6, pp. 1175–1187.

    Article  PubMed  CAS  Google Scholar 

  5. Röhlich, P. and Szél, A., Photoreceptor Cells in the Xenopus Retina, Microsc. Res. Tech., 2000, vol. 50, no. 5, pp. 327–337.

    Article  PubMed  Google Scholar 

  6. Zhang, J. and Wu, S.M., Immunocytochemical Analysis of Photoreceptors in the Tiger Salamander Retina, Vision Res., 2009, vol. 49, no. 1, pp. 64–73.

    Article  PubMed  Google Scholar 

  7. Yokoyama, S., Molecular Evolution of Vertebrate Visual Pigments, Prog. Retin. Eye Res., 2000, vol. 19, no. 4, pp. 385–419.

    Article  PubMed  CAS  Google Scholar 

  8. Bowmaker, J.K., Evolution of Vertebrate Visual Pigments, Vision Res., 2008, vol. 48, no. 20, pp. 2022–2041.

    Article  PubMed  CAS  Google Scholar 

  9. Collin, S.P.., Davies, W.L., Hart, N.S., and Hunt, D.M., The Evolution of Early Vertebrate Photoreceptors, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, vol. 364, no. 1531, pp. 2925–2940.

    Article  PubMed  CAS  Google Scholar 

  10. Shichida, Y. and Matsuyama, T., Evolution of Opsins and Phototransduction, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, vol. 364, no. 1531, pp. 2881–2895.

    Article  PubMed  CAS  Google Scholar 

  11. Bridges, C.D.B., The Rhodopsin-Porphyropsin Visual System, Handbook of Sensory Physiology, vol. VII/1, Ed. H.J.A. Dartnall, Berlin-Heidelberg-New York: Springer Verlag, 1972, pp. 417–480.

    Google Scholar 

  12. Donner, K.O. and Reuter, T., Visual Pigments and Photoreceptor Function, Llinas, R. and Precht, W., Eds., Berlin-Heidelberg: Springer, 1976, pp. 251–277.

  13. Lythgoe, J.N., List of Vertebrate Pigments, Handbook of Sensory Physiology, vol. VII/1, Dartnall, H.J.A., Ed., Berlin-Heidelberg-New York: Springer Verlag, 1972, pp. 604–624.

    Google Scholar 

  14. Sakakibara, S., Hiramatsu, H., Takahashi, Y., Hisatomi, O., Kobayashi, Y., Sakami, S., Saito, T., and Tokunaga, F., Opsin Expression in Adult, Developing, and Regenerating Newt Retinas, Brain Res. Mol. Brain Res., 2002, vol. 103, no. 1–2, pp. 28–35.

    Article  PubMed  CAS  Google Scholar 

  15. Makino, C.L., Taylor, W.R., and Baylor, D.A., Rapid Charge Movements and Photosensitivity of Visual Pigments in Salamander Rods and Cones, J. Physiol., 1991, vol. 442, pp. 761–780.

    PubMed  CAS  Google Scholar 

  16. Perry, R.J. and McNaughton, P.A., Response Properties of Cones from the Retina of the Tiger Salamander, J. Physiol., 1991, vol. 433, pp. 561–587.

    PubMed  CAS  Google Scholar 

  17. Govardovskii, V.I., Fyhrquist, N., Reuter, T., Kuzmin, D.G., and Donner, K., In Search of the Visual Pigment Template, Vis. Neurosci., 2000, vol. 17, no. 4, pp. 509–528.

    Article  PubMed  CAS  Google Scholar 

  18. Deutschlander, M.E. and Phillips, J.B., Characterization of an Ultraviolet Photoreception Mechanism in the Retina of an Amphibian, the Axolotl (Ambystoma mexicanum), Neurosci. Lett., 1995, vol. 197, no. 2, pp. 93–96.

    Article  PubMed  CAS  Google Scholar 

  19. Govardovskii, V.P., Zueva, L.V., Kiseleva, E.I., and Margulis, S.E., Organ zreniya, Sibirskii uglozub: zoogeografiya, sistematika, morfologiya (Vision Organ, Siberian Salamander: Zoogeography, Taxonomy, Morphology), Vorobieva, E.I., Ed., Moscow, Nauka, 1994, pp. 296–307.

  20. Koskelainen, A., Hemilä, S., and Donner, K., Spectral Sensitivities of Short- and Long-Wavelength Sensitive Cone Mechanisms in the Frog Retina, Acta. Physiol. Scand., 1994, vol. 152, no. 1, pp. 115–124.

    Article  PubMed  CAS  Google Scholar 

  21. Ma, J., Znoiko, S., Othersen, K.L., Ryan, J.C., Das, J., Isayama, T., Kono, M., Oprian, D.D., Corson, D.W., Cornwall, M.C., Cameron, D.A., Harosi, F.I., Makino, C.L., and Crouch, R.K., A Visual Pigment Expressed in both Rod and Cone Photoreceptors, Neuron, 2001, vol. 32, no. 3, pp. 451–461.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi, Y., Hisatomi, O., Sakakibara, S., Tokunaga, F., and Tsukahara, Y., Distribution of Blue-Sensitive Photoreceptors in Amphibian Retinas, FEBS Lett., 2001, vol. 501, no. 2–3, pp. 151–155.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, Y., Znoiko, S., DeGrip, W.J., Crouch, R.K., and Ma, J.X., Salamander Blue-Sensitive Cones Lost during Metamorphosis, Photochem. Photobiol., 2008, vol. 84, no. 4, pp. 855–862.

    Article  PubMed  CAS  Google Scholar 

  24. Denton, E.J. and Wyllie, J.H., Study of the Photosensitive Pigments in the Pink and Green Rods of the Frog, J. Physiol., 1955, vol. 127, no. 1, pp. 81–89.

    PubMed  CAS  Google Scholar 

  25. Dartnall, H.J., The Visual Pigment of the Green Rods, Vision Res., 1967, vol. 7, no. 1, pp. 1–16.

    Article  PubMed  CAS  Google Scholar 

  26. Liebman, P.A., Microspectrophotometry of Photoreceptors, Handbook of Sensory Physiology, vol. VII/1, Dartnall, H.J.A., Ed., Berlin-Heidelberg-New York: Springer Verlag, 1972, pp. 481–528.

    Google Scholar 

  27. Witkovsky, P., Yang, C.Y., and Ripps, H., Properties of a Blue-Sensitive Rod in the Xenopus Retina, Vision Res., 1981, vol. 21, no. 6, pp. 875–883.

    Article  PubMed  CAS  Google Scholar 

  28. Matthews, G., Physiological Characteristics of Single Green Rod Photoreceptors from Toad Retina, J. Physiol., 1983, vol. 342, pp. 347–359.

    PubMed  CAS  Google Scholar 

  29. Makino-Tasaka, M. and Suzuki, T., The Green Rod Pigment of the Bullfrog, Rana catesbeiana, Vision Res., 1984, vol. 24, no. 4, pp. 309–322.

    Article  PubMed  CAS  Google Scholar 

  30. Hisatomi, O., Takahashi, Y., Taniguchi, Y., Tsukahara, Y., and Tokunaga, F., Primary Structure of a Visual Pigment in Bullfrog Green Rods, FEBS Lett., 1999, vol. 447, no. 1, pp. 44–48.

    Article  PubMed  CAS  Google Scholar 

  31. Darden, A.G., Wu, B.X., Znoiko, S.L., Hazard, E.S. 3rd, Kono, M., Crouch, R.K., and Ma, J.X., A Novel Xenopus SWS2, P434 Visual Pigment: Structure, Cellular Location, and Spectral Analyses, Mol. Vis., 2003, vol. 9, pp. 191–199.

    PubMed  CAS  Google Scholar 

  32. Nilsson, S.E., An Electron Microscopic Classification of the Retinal Receptors of the Leopard Frog (Rana pipiens), J. Ultrastruct. Res., 1964, vol. 10, pp. 390–416.

    Article  PubMed  CAS  Google Scholar 

  33. Ala-Laurila, P., Kolesnikov, A.V., Crouch, R.K., Tsina, E., Shukolyukov, S.A., Govardovskii, V.I., Koutalos, Y., Wiggert, B., Estevez, M.E., and Cornwall, M.C., Visual Cycle: Dependence of Retinol Production and Removal on Photoproduct Decay and Cell Morphology, J. Gen. Physiol., 2006, vol. 128, no. 2, pp. 153–169.

    Article  PubMed  CAS  Google Scholar 

  34. Liebman, P.A. and Entine, G., Visual Pigments of Frog and Tadpole (Rana pipiens), Vision Res., 1968, vol. 8, no. 7, pp. 761–775.

    Article  PubMed  CAS  Google Scholar 

  35. Harosi, F.I., Recent Results from Single-Cell Microspectrophotometry: Cone Pigments in Frog, Fish, and Monkey, Color Res. Appl., 1982, vol. 7, pp. 135–141.

    Article  Google Scholar 

  36. Babu, K.R., Dukkipati, A., Birge, R.R., and Knox, B.E., Regulation of Phototransduction in Short-Wavelength Cone Visual Pigments via the Retinylidene Schiff Base Counterion, Biochemistry, 2001, vol. 40, no. 46, pp. 13760–13766.

    Article  PubMed  CAS  Google Scholar 

  37. Muntz, W.R.A., Phototaxis and Green Rods in Urodeles, Nature, 1963, vol. 199, p. 620.

    Article  Google Scholar 

  38. Himstedt, W., Helas, A., and Sommer, T.J., Projections of Color Coding Retinal Neurons in Urodele Amphibians, Brain Behavol. Evol., 1981, vol. 18, no. 1–2, pp. 19–32.

    Article  CAS  Google Scholar 

  39. Przyrembel, C., Keller, B., and Neumeyer, C., Trichromatic Color Vision in the Salamander (Salamandra salamandra), J. Comp. Physiol. A, 1995, vol. 176, pp. 575–586.

    Article  Google Scholar 

  40. Govardovskii, V.I. and Zueva, L.V., High-Rate Microspectrophotometer for Study of Photolysis of Visual Pigments in situ, Sensor. Sist., 2000, vol. 14, pp. 288–296.

    Google Scholar 

  41. Denton, E.J. and Pirenne, M.H., Green Coloured Rods and Retinal Sensitivity, J. Physiol., 1952, vol. 116, no. 3, pp. 33–34.

    Google Scholar 

  42. Donner, K.O. and Rushton, W.A., Rod-Cone Interaction in the Frog’s Retina Analysed by the Stilles-Crawford Effect and by Dark Adaptation, J. Physiol., 1959, vol. 149, pp. 303–317.

    PubMed  CAS  Google Scholar 

  43. Takahashi, Y. and Ebrey, T.G., Molecular Basis of Spectral Tuning in the Newt Short Wavelength Sensitive Visual Pigment, Biochemistry, 2003, vol. 42, no. 20, pp. 6025–6034.

    Article  PubMed  CAS  Google Scholar 

  44. Harosi, F.I., Absorption Spectra and Linear Dichroism of Some Amphibian Photoreceptors, J. Gen. Physiol., 1975, vol. 66, no. 3, pp. 357–382.

    Article  PubMed  CAS  Google Scholar 

  45. Keefe, J.R., The Fine Structure of the Retina in the Newt, Triturus viridescens, J. Exp. Zool., 1971, vol. 177, no. 3, pp. 263–293.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Korenyak.

Additional information

Original Russian Text © D.A. Korenyak, V.I. Govardovskii, 2013, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013, Vol. 49, No. 4, pp. 264–271.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenyak, D.A., Govardovskii, V.I. Photoreceptors and visual pigments in three species of newts. J Evol Biochem Phys 49, 399–407 (2013). https://doi.org/10.1134/S0022093013040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013040038

Key words

Navigation