Skip to main content
Log in

Spectral and Spatial Characteristics of the Electromagnetic Modes in a Tunable Optical Microcavity Cell for Studying Hybrid Light–Matter States

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Studies of resonance interaction between matter and localized electromagnetic field in a cavity have recently attracted much interest because they offer the possibility of controllably modifying some of the fundamental material properties. However, despite the large number of such studies, these is no universal approach that would allow investigation of sets of different samples with wide variation of the main experimental parameters of the optical modes. In this work, the main optical parameters of a previously developed universal tunable microcavity cell, i.e., the Q factor and mode volume, as well as their dependence on the characteristics of cavity mirrors and spacing between them, are analyzed. The results obtained will significantly expand the scope of applications of resonance interaction between light and matter, including such effects as the enhancement of Raman scattering, long-range resonance nonradiative energy transfer, and modification of chemical reaction rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, Angew. Chem. Int. Ed. 54, 7971 (2015).

    Article  Google Scholar 

  2. D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, Nat. Mater. 13, 712 (2014).

    Article  ADS  Google Scholar 

  3. J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, Angew. Chem. Int. Ed. 51, 1592 (2012).

    Article  Google Scholar 

  4. F. Schleifenbaum, K. Elgass, M. Steiner, J. Enderlein, S. Peter, and A. J. Meixner, Proc. SPIE 7185, 718504 (2009).

    Article  Google Scholar 

  5. M. Pelton, Nat. Photon. 9, 427 (2015).

    Article  ADS  Google Scholar 

  6. S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).

    Article  ADS  Google Scholar 

  7. D. Dovzhenko, E. Osipov, I. Martynov, P. Linkov, and A. Chistyakov, Phys. Proc. 73, 126 (2015).

    Article  ADS  Google Scholar 

  8. S. Bar, A. Chizhik, R. Gutbrod, F. Schleifenbaum, A. Chizhik, and A. J. Meixner, Anal. Bioanal. Chem. 396, 3 (2010).

    Article  Google Scholar 

  9. D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, Nanoscale 10, 3589 (2018).

    Article  Google Scholar 

  10. E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  11. P Torma and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2014).

    Article  ADS  Google Scholar 

  12. G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, Nat. Phys. 2, 81 (2006).

    Article  Google Scholar 

  13. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, Opt. Express 24, 16366 (2016).

    Article  ADS  Google Scholar 

  14. R. Tao, M. Arita, S. Kako, K. Kamide, and Y. Arakawa, Appl. Phys. Lett. 107, 101102 (2015).

    Article  ADS  Google Scholar 

  15. H. Fernandez, S. Russo, and W. Barnes, in Proceedings of the Conference Frontiers in Optics, San Jose, CA, Oct. 18–21, 2017 (OSA, 2017), Paper JW3A-59.

    Google Scholar 

  16. S. Schwarz, S. Dufferwiel, F. Withers, A. A. Trichet, F.Li, C. Clark, K. S. Novoselov, J. M. Smith, M. S. Skolnic, D. N. Krizhanovskii, and A. I. Tartakovskii, Nano Lett. 14, 7003 (2014).

    Article  ADS  Google Scholar 

  17. K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, Rev. Sci. Instrum. 89, 053105 (2018).

    Article  ADS  Google Scholar 

  18. K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, Ultramicroscopy 182, 118 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Nabiev.

Additional information

Russian Text © D.S. Dovzhenko, I.S. Vaskan, K.E. Mochalov, Yu.P. Rakovich, I.R. Nabiev, 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 1, pp. 12–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovzhenko, D.S., Vaskan, I.S., Mochalov, K.E. et al. Spectral and Spatial Characteristics of the Electromagnetic Modes in a Tunable Optical Microcavity Cell for Studying Hybrid Light–Matter States. Jetp Lett. 109, 12–17 (2019). https://doi.org/10.1134/S0021364019010077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019010077

Navigation