Skip to main content
Log in

Black hole and hawking radiation by type-II Weyl fermions

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The type-II Weyl and type-II Dirac fermions may emerge behind the event horizon of black holes. Correspondingly, the black hole can be simulated by creation of the region with overtilted Weyl or Dirac cones. The filling of the electronic states inside the “black hole” is accompanied by Hawking radiation. The Hawking temperature in the Weyl semimetals can reach the room temperature, if the black hole region is sufficiently small, and thus the effective gravity at the horizon is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, I. Z. Phys. 56, 330 (1929).

    Article  ADS  Google Scholar 

  2. J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929).

    Google Scholar 

  3. S. P. Novikov, Sov. Math. Dokl. 23, 298 (1981).

    Google Scholar 

  4. G. E. Volovik, JETP Lett. 46, 98 (1987).

    ADS  Google Scholar 

  5. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  6. G. E. Volovik and V. A. Konyshev, JETP Lett. 47, 250 (1988).

    ADS  Google Scholar 

  7. T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).

    Article  ADS  Google Scholar 

  8. M. Krusius, T. Vachaspati, and G. E. Volovik, condmat/ 9802005.

  9. G. E. Volovik, Physica B 255, 86 (1998).

    Article  ADS  Google Scholar 

  10. C. Herring, Phys. Rev. 52, 365 (1937).

    Article  ADS  Google Scholar 

  11. A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).

    ADS  Google Scholar 

  12. A. A. Abrikosov, J. Low Temp. Phys. 5, 141 (1972).

    Article  ADS  Google Scholar 

  13. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  15. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  16. H. Weng, Ch. Fang, Zh. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  17. Sh.-M. Huang, S.-Y. Xu, I. Belopolski, et al. (Collab.), Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  18. B. Q. Lv, H. M. Weng, B. B. Fu, et al. (Collab.), Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  19. S.-Y. Xu, I. Belopolski, N. Alidoust, et al. (Collab.), Science 349, 613 (2015).

    Article  ADS  Google Scholar 

  20. L. Lu, Zh. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, Science 349, 622 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. A. Soluyanov, D. Gresch, Zh. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527, 495 (2015).

    Article  ADS  Google Scholar 

  22. Y. Xu, F. Zhang, and Ch. Zhang, Phys. Rev. Lett. 115, 265304 (2015).

    Article  ADS  Google Scholar 

  23. T.-R. Chang, S.-Y. Xu, G. Chang, et al. (Collab.), Nat. Commun. 7, 10639 (2016).

    Article  ADS  Google Scholar 

  24. G. Autes, D. Gresch, A. A. Soluyanov, M. Troyer, and O. V. Yazyev, arXiv:1603.04624.

  25. S.-Y. Xu, N. Alidoust, G. Chang, et al. (Collab.), arXiv:1603.07318.

  26. J. Jiang, Z. K. Liu, Y. Sun, et al. (Collab.), arXiv:1604.00139.

  27. T. E. O’Brien, M. Diez, and C. W. J. Beenakker, arXiv:1604.01028.

  28. L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski, arXiv:1603.06482.

  29. N. Xu, Z. J. Wang, A. P. Weber, et al. (Collab.), arXiv:1604.02116.

  30. K. Deng, G. Wan, P. Deng, et al. (Collab.), arXiv:1603.08508.

  31. A. Liang, J. Huang, S. Nie, et al. (Collab.), arXiv:1604.01706.

  32. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).

    ADS  Google Scholar 

  33. Y. Wu, N. H. Jo, D. Mou, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, arXiv:1604.05176.

  34. Y. Xu, F. Zhang, and C. Zhang, Phys. Rev. Lett. 115, 265304 (2015).

    Article  ADS  Google Scholar 

  35. Z. Yu, Y. Yao, and S. A. Yang, arXiv:1604.04030.

  36. M. Udagawa and E. J. Bergholtz, arXiv:1604.08457.

  37. A. A. Zyuzin and R. P. Tiwari, arXiv:1601.00890.

  38. G. E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014).

    Article  ADS  Google Scholar 

  39. P. Huhtala and G. E. Volovik, J. Exp. Theor. Phys. 121, 995 (2002); gr-qc/0111055.

    Google Scholar 

  40. G. E. Volovik, arXiv:1604.00849.

  41. P. Painlevé, C. R. Hebd. Seances Acad. Sci. 173, 677 (1921); A. Gullstrand, Ark. Mat., Astron. Fys. 16, 1 (1922).

    ADS  Google Scholar 

  42. W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).

    Article  ADS  Google Scholar 

  43. W. G. Unruh, Phys. Rev. D 51, 2827 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Kraus and F. Wilczek, Mod. Phys. Lett. A 9, 3713 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  45. C. Doran, Phys. Rev. D 61, 067503 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  46. V. A. Kostelecky and N. Russell, Rev. Mod. Phys. 83, 11 (2011).

    Article  ADS  Google Scholar 

  47. G. E. Volovik, JETP Lett. 91, 55 (2010); arXiv:0912.0502.

    Article  ADS  Google Scholar 

  48. C. Barcelo, S. Liberati, and M. Visser, Class. Quantum Grav. 18, 1137 (2001).

    Article  ADS  Google Scholar 

  49. O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, Phys. Rev. Lett. 105, 240401 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E. Black hole and hawking radiation by type-II Weyl fermions. Jetp Lett. 104, 645–648 (2016). https://doi.org/10.1134/S0021364016210050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016210050

Navigation