Skip to main content
Log in

Quantum electrodynamics with anisotropic scaling: Heisenberg-Euler action and Schwinger pair production in the bilayer graphene

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We discuss quantum electrodynamics emerging in the vacua with anisotropic scaling. Systems with anisotropic scaling were suggested by Hořava in relation to the quantum theory of gravity. In such vacua, the space and time are not equivalent, and moreover they obey different scaling laws, called the anisotropic scaling. Such anisotropic scaling takes place for fermions in bilayer graphene, where if one neglects the trigonal warping effects the massless Dirac fermions have quadratic dispersion. This results in the anisotropic quantum electrodynamics, in which electric and magnetic fields obey different scaling laws. Here we discuss the Heisenberg-Euler action and Schwinger pair production in such anisotropic QED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  3. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 496, 109 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  5. G. E. Volovik, draft for Chapter in Proceedings of the Como Summer School on Analogue Gravity, arXiv:1111.4627.

  6. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    Article  ADS  Google Scholar 

  7. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G. E. Volovik, Exotic Properties of Superfluid 3 He (World Scientific, Singapore, 1992).

    Google Scholar 

  9. N. Schopohl and G. E. Volovik, Ann. Phys. (N.Y.) 215, 372 (1992).

    Article  ADS  Google Scholar 

  10. A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).

    ADS  Google Scholar 

  11. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).

    Article  ADS  Google Scholar 

  13. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  14. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  15. V. Aji, arXiv:1108.4426.

  16. T. D. C. Bevan, A. J. Manninen, J. B. Cook, et al., Nature 386, 689 (1997).

    Article  ADS  Google Scholar 

  17. P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Hořava, Phys. Rev. D 79, 084008 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Hořava, J. High Energy Phys. 0903, 020 (2009).

    ADS  Google Scholar 

  20. C. Xu and P. Hořava, Phys. Rev. D 81, 104033 (2010).

    Article  ADS  Google Scholar 

  21. S. A. Safran, Phys. Rev. B 30, 421 (1984).

    Article  ADS  Google Scholar 

  22. M. Koshino and T. Ando, Phys. Rev. B 76, 085425 (2007).

    Article  ADS  Google Scholar 

  23. A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski, et al., Science 333, 860 (2011).

    Article  ADS  Google Scholar 

  24. J. O. Andersen and T. Haugset, Phys. Rev. D 51, 3073 (1995).

    Article  ADS  Google Scholar 

  25. O. Andreev, Int. J. Mod. Phys. A 25, 2087 (2010); arXiv:0910.1613.

    Article  ADS  MATH  Google Scholar 

  26. D. Allor, T. D. Cohen, and D. A. McGady, Phys. Rev. D 78, 096009 (2008).

    Article  ADS  Google Scholar 

  27. N. M. Vildanov, J. Phys.: Condens. Matter 21, 445802 (2009).

    Article  ADS  Google Scholar 

  28. M. A. Zubkov, Pis’ma Zh. Eksp. Teor. Fiz. 95, 540 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Katsnelson.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsnelson, M.I., Volovik, G.E. Quantum electrodynamics with anisotropic scaling: Heisenberg-Euler action and Schwinger pair production in the bilayer graphene. Jetp Lett. 95, 411–415 (2012). https://doi.org/10.1134/S0021364012080061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012080061

Keywords

Navigation