Skip to main content
Log in

Instruments and Methods for Measuring 14С (a Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The main methods for measuring 14C based on a Libby counter, a proportional gas-filled counter, liquid scintillation counting, and accelerator mass spectrometry are considered. The measurement features, advantages, and disadvantages of each presented method are described. The radiocarbon concentration in annual rings of a pine tree grown in Akademgorodok of Novosibirsk has been measured using the accelerator mass spectrometry method. The measured 14C concentration in the samples is in the range from 95.4 ± 0.2 to 191.5 ± 2.2 pMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Molodin, V.I., Nenakhov, D.A., Myl’nikova, L.N., Rainkhol’d, S., Parkhomchuk, E.V., Kalinki, P.N., Parkhomchuk, V.V., and Rastigeev, S.A., Arkheol., Etnogr. Antropol. Evrazii, 2019, vol. 47, no. 1, p. 15. https://doi.org/10.17746/1563-0102.2019.47.1.015-022

    Article  Google Scholar 

  2. Molodin, V.I., Myl’nikova, L.N., Nesterova, M.S., Kobeleva, L.S., Nenakhov, D.A., Parkhomchuk, E.V., Rainkhol’d, S., Petrozhitskii, A.V., Parkhomchuk, V.V., and Rastigeev, S.A., Probl. Arkheol., Etnogr., Antropol. Sib. Sopredel’nykh Territ., 2019, vol. 25, p. 157. https://doi.org/10.17746/2658-6193.2019.25.157-166

    Article  Google Scholar 

  3. Shnaider, S.V. and Parkhomchuk, E.V., Radiouglerod v arkheologii i paleoekologii: proshloe, nastoyashchee, budushchee. Materialy mezhdunarodnoi konferentsii (Proc. Int. Conference “Radiocarbon for Archaeology and Paleoecology: Past, Present, Future”), St. Petersburg, 2020, p. 111. https://doi.org/10.31600/978-5-91867-213-6-111-113.

  4. Rudaya, N., Krivonogov, S., Słowinski, M., Cao, X., and Zhilich, S., Quat. Sci. Rev., 2020, vol. 249, p. 106616. https://doi.org/10.1016/j.quascirev.2020.106616

    Article  Google Scholar 

  5. Fedotov, A.P., Trunova, V.A., Stepanova, O.G., Vorobyeva, S.S., Parkhomchuk, E.V., Krapivina, S.M., Zheleznyakova, T.O., and Legkodymov, A.A, Quat. Int. (in press). https://doi.org/10.1016/j.quaint.2021.05.026

  6. Vasil’ev, S.K., Parkhomchuk, E.V., Serednev, M.A., Milyutin, K.I., Kuz’min, Ya.V., Kalinkin, P.N., and Rastigeev, S.A., Probl. Arkheol., Etnogr., Antropol. Sib. Sopredel’nykh Territ., 2018, vol. 24, p. 42. https://doi.org/10.17746/2658-6193.2018.24.042-046

    Article  Google Scholar 

  7. Caglar, M., Belzberg, A.S., Spruston, B., and Sexsmith, G., Clin. Nucl. Med., 1999, vol. 24, no. 9, p. 674. https://doi.org/10.1097/00003072-199909000-00007

    Article  Google Scholar 

  8. Mattar, R., Silva, F.M., Alexandrino, A.M., and Laudanna, A.A., Rev. Inst. Med. Trop. Sao Paulo, 1999, vol. 41, no. 1, p. 3. https://doi.org/10.1590/S0036-46651999000100002

    Article  Google Scholar 

  9. Rasool, S., Abid, S., and Jafri, W., World J. Gastroenterol., 2007, vol. 13, no. 6, p. 925. https://doi.org/10.3748/wjg.v13.i6.925

    Article  Google Scholar 

  10. Kryshev, A.I., Kryshev, I.I., Vasyanovich, M.E., Ekidin, A.A., Kapustin, I.A., and Murashova, E.L., At. Energ., 2020, vol. 128, no. 1, p. 46.

    Google Scholar 

  11. Ekidin, A.A., Zhukovskii, M.V., and Vasyanovich, M.E., At. Energ., 2016, vol. 120, no. 2. p. 106.

    Article  Google Scholar 

  12. Burcham, W.E. and Goldhaber, M., Math. Proc. Cambridge Philos. Soc., 1936, vol. 32, no. 4, p. 632. https://doi.org/10.1017/S0305004100019356

    Article  ADS  Google Scholar 

  13. Audi, G., Kondev, F.G., Wang, M., Huang, W.J., and Naimi, S., Chin. Phys., 2017, vol. 41, no. 3, p. 030001. https://doi.org/10.1088/1674-1137/41/3/030001

    Article  ADS  Google Scholar 

  14. Kocher, D.C., Nuclear Decay Data for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities, Oak Ridge, TN: Oak Ridge National Laboratory, 1977. https://doi.org/10.2172/7086358.

  15. Management of Waste Containing Tritium and Carbon-14, Technical Reports Series no. 421, Vienna: International Atomic Energy Agency, 2004. https://wwwpub.iaea.org/MTCD/Publications/PDF/ TRS421_web.pdf.

  16. Haag, G.L., in Radioactive Waste Management Handbook, vol. 2: Treatment of Gaseous Effluents at Nuclear Facilities, Chur: Harwood Academic Publ., 1991, p. 269.

  17. Magnusson, Å., PhD Thesis, Lund Univ., 2007. https://www.kth.se/polopoly_fs/1.469654. 1550154389!/C-14%20Produced%20by%20Nuclear%20Power%20Reactors%20%E2%80%93%20Generation%20and%20Characterization%20of%20Gaseous.pdf.

  18. Hou, X., J. Nucl. Fuel Cycle Waste Technol., 2018, vol. 16, no. 1, p. 11. https://doi.org/10.7733/jnfcwt.2018.16.1.11

    Article  Google Scholar 

  19. Nazarov, E.I., Ekidin, A.A., and Vasil’ev, A.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2018, vol. 61, no. 12–2, p. 67.

  20. Rublevskii, V.P., Yatsenko, V.N., and Chanyshev, E.G., Rol’ ugleroda-14 v tekhnogennom obluchenii cheloveka (Role of Carbon-14 for Technogenic Human Exposure), Moscow: IzdAT, 2004.

  21. Povinec, P., Litherland, A., and von Reden, K., Radiocarbon, 2009, vol. 51, no. 1, p. 45. https://doi.org/10.1017/S0033822200033701

    Article  Google Scholar 

  22. Warner, M., Carbon-14 is 75±0 Years Old, National Museum of American History, 2015. https://americanhistory.si.edu/blog/carbon-14.

  23. de Vries, Hl. and Barendsen, G.W., Physica, 1953, vol. 19, nos. 1–12, p. 987. https://doi.org/10.1016/S0031-8914(53)80110-2

  24. Liquid Scintillation Counting, Perkin Elmer. https://www.perkinelmer.com/labproducts-and-services/application-support-knowledgebase/radiometric/liquidscintillation-counting.html#LiquidscintillationcountingLiquidscintillationcountingtheory.

  25. Liquid Scintillation Counting, Nuclear and Radiochemistry Teaching Material Wiki. https://nucwik.com/From_WikiSpaces/mainSpace/Liquid%20Scintillation%20Counti ng.html.

  26. Linick, T.W., Damon, P.E., Donahue, D.J., and Jull, A.J.T., Quat. Int., 1989, vol. 1, p. 1. https://doi.org/10.1016/1040-6182(89)90004-9

    Article  Google Scholar 

  27. Alinovsky, N.I., Goncharov, A.D., Klyuev, V.F., Konstantinov, S.G., Konstantinov, E.S., Kryuchkov, A.M., Parkhomchuk, V.V., Petrichenkov, M.V., Rastigeev, S.A., and Reva, V.B., Tech. Phys., 2009, vol. 54, no. 9, p. 1350.

    Article  Google Scholar 

  28. Parkhomchuk, V.V., Petrozhitskii, A.V., and Rastigeev, S.A., Phys. Part. Nucl. Lett., 2012, vol. 9, nos. 4–5, p. 448. https://doi.org/10.1134/S1547477112040267

    Article  Google Scholar 

  29. Nazarov, E.I., Ekidin, A.A., Vasiljev, A.V., Vasya-novich, M.E., Nichiporchuk, A.O., Kozhemyakin, V.A., Kapustin, I.A., Privalov, I.A., Parkhomchuk, E.V., Rastigeev, S.A., and Parkhomchuk, V.V., RAD Conf. Proc., 2020, vol. 4, p. 142. https://doi.org/10.21175/RadProc.2020.30.

  30. Parkhomchuk, E., Kalinkin, P., Rastigeev, S., Parkhomchuk, V., Kuleshov, D., Lysikov, A., and Krivonogov, S., Proc. 14th Int. Workshop on Present Earth Surface Processes and Long-Term Environmental Changes in East Eurasia, Novosibirsk, 2017, p. 77.

  31. Stenström, K., Skog, G., Georgiadou, E., Genberg, J., and Mellström, A., Division of Nuclear Physics Internal Report LUNFD NFFR-3111, Lund Univ., 2011.

    Google Scholar 

  32. Lysikov, A.I., Kalinkin, P.N., Sashkina, K.A., Okunev, A.G., Parkhomchuk, E.V., Rastigeev, S.A., Parkhomchuk, V.V., Kuleshov, D.V., Vorobyeva, E.E., and Dralyuk, R.I., Int. J. Mass Spectrom., 2018, vol. 433, p. 11. https://doi.org/10.1016/j.ijms.2018.08.003

    Article  Google Scholar 

  33. Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Berdau, D., Vogel, J.C., and Münnich, K.O., in Trends: A Compendium of Data on Global Change, Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1994.

    Google Scholar 

  34. Vasyanovich, M., Vasilyev, A., Ekidin, A., Kapustin, I., and Kryshev, A., Nucl. Eng. Technol., 2019, vol. 51, no. 4, p. 1176. https://doi.org/10.1016/j.net.2019.02.010

    Article  Google Scholar 

  35. Lebedev, S.V., Kulkova, M.A., Zarina, L.M., and Nesterov, E.M., Proc. 6th Int. Symposium “Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature,” St. Petersburg, 2018, p. 297. https://doi.org/10.1007/978-3-030-21614-6_17.

Download references

ACKNOWLEDGMENTS

We are grateful to E.E. Vorob’eva for her help in preparing wood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Nazarov.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, E.I., Kruzhalov, A.V., Ekidin, A.A. et al. Instruments and Methods for Measuring 14С (a Review). Instrum Exp Tech 64, 790–795 (2021). https://doi.org/10.1134/S0020441221060166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221060166

Navigation