Skip to main content
Log in

Selection of the Accelerating Structure of a Small Linear Electron Accelerator for Radiotherapy

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Modern systems for photon radiotherapy are based on electron accelerators with energies up to 6 MeV. The development and production of such accelerators is in a mature state. However, for the implementation of new methods of radiation therapy, such as noncoplanar or 4π-therapy, commercially available accelerators are too bulky. Another obstacle to the wider adoption and availability of modern linear accelerator technology is the high capital and operating costs. This article will consider the issue of choosing an accelerating structure for an economical small electron accelerator for the noncoplanar photon radiation therapy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. A movable part of a radiotherapy apparatus containing a radiation source.

REFERENCES

  1. Kutsaev, S.V., Tech. Phys., 2021, vol. 66, no. 2, p. 161. https://doi.org/10.1134/S1063784221020158

    Article  Google Scholar 

  2. Orth, R.C., Wallace, M.J., and Kuo, M.D., J. Vasc. Interventional Radiol., 2008, vol. 19, no. 6, p. 814. https://doi.org/10.1016/j.jvir.2008.02.002

    Article  Google Scholar 

  3. Kurup, G., J. Med. Phys., 2010, vol. 35, no. 2, p. 63. https://doi.org/10.4103/0971-6203.62194

    Article  Google Scholar 

  4. Yu, V.Y., Tran, A., Nguyen, D., Cao, M., Ruan, D., Low, D.A., and Sheng, K., Med. Phys., 2015, vol. 42, no. 11, p. 6457. https://doi.org/10.1118/1.4932631

    Article  Google Scholar 

  5. Wilke, L., Andratschke, N., Blanck, O., Brunner, T.B., Combs, S.E., Grosu, A.L., Moustakis, C., Schmitt, D., Baus, W.W., and Guckenberger, M., Strahlenther. Onkol., 2019, vol. 195, no. 3, p. 193. https://doi.org/10.1007/s00066-018-1416-x

    Article  Google Scholar 

  6. Dong, P., Nguyen, D., Ruan, D., King, C., Long, T., Romeijn, E., Low, D.A., Kupelian, P., Steinberg, M., Yang, Y., and Sheng, K., Pract. Radiat. Oncol., 2014, vol. 4, no. 4, p. 254. https://doi.org/10.1016/j.prro.2013.10.009

    Article  Google Scholar 

  7. Dong, P., Lee, P., Ruan, D., Long, Y., Romeijn, E., Yang, Y., Low, D., Kupelian, P., and Sheng, K., Int. J. Radiat. Oncol., Biol., Phys., 2013, vol. 85, no. 5, p. 1360. https://doi.org/10.1016/j.ijrobp.2012.09.028

    Article  Google Scholar 

  8. Smyth, G., Evans, P.M., Bamber, J.C., and Bedford, J.L., Br. J. Radiol., 2019, vol. 92, no. 1097, p. 20180908. https://doi.org/10.1259/bjr.20180908

    Article  Google Scholar 

  9. Protonnye puchki vysokikh energii i luchevaya terapiya zlokachestvennykh opukholei (High Energy Proton Beams and Radiological Therapy for Malignant Tumors), Dzhelepov, V.P., and Ruderman, A.I., Eds., Dubna, 1975.

    Google Scholar 

  10. Lyu, Q., Neph, R., Yu, V.Y., Ruan, D., Boucher, S., and Sheng, K., Phys. Med. Biol., 2020, vol. 65, no. 4, p. 045003. https://doi.org/10.1088/1361-6560/ab63b8

    Article  Google Scholar 

  11. Rwigema, J.C.M., Nguyen, D., Heron, D.E., Chen, A.M., Lee, P., Wang, P.C., Vargo, J.A., Low, D.A., Huq, M.S., Tenn, S., Steinberg, M.L., Kupelian, P., and Sheng, K., Int. J. Radiat. Oncol., Biol., Phys., 2015, vol. 91, no. 2, p. 401. https://doi.org/10.1016/j.ijrobp.2014.09.043

    Article  Google Scholar 

  12. Dong, P., Lee, P., Ruan, D., Long, T., Romeijn, E., Low, D.A., Kupelian, P., Abraham, J., Yang, Y., and Sheng, K., Int. J. Radiat. Oncol., Biol., Phys., 2013, vol. 86, no. 3, p. 407. https://doi.org/10.1016/j.ijrobp.2013.02.002

    Article  Google Scholar 

  13. Woods, K., Harrison, M., Boucher, S., McNevin, J., Kutsaev, S., Faillace, L., and Sheng, K., Med. Phys., 2016, vol. 43, no. 6, p. 3895. https://doi.org/10.1118/1.4958253

    Article  Google Scholar 

  14. Agustsson, R., Berry, R., Boucher, S., Hartzell, J., Kutsaev, S., McNevin, J., and Verma, A., US Patent 10212800, 2019.

  15. Kutsaev, S.V., Instrum. Exp. Tech., 2021, vol. 64, no. 5 (in press).

  16. Kutsaev, S.V., Agustsson, R., Arodzero, A., Berry, R., Bezhanov, A., Boucher, S., Chimalpopoca, O., Diego, A., Faillace, L., Gavryushkin, D., Harrison, M., Hartzell, J.J., McNevin, J., Ruelas, M., Smirnov, A.Yu., et al., Radiat. Phys. Chem., 2021, vol. 185, p. 109494. https://doi.org/10.1016/j.radphyschem.2021.109494

    Article  Google Scholar 

  17. Page, B.R., Hudson, A.D., Brown, D.W., Shulman, A.C., Abdel-Wahab, M., Fisher, B.J., and Patel, S., Int. J. Radiat. Oncol., Biol., Phys., 2014, vol. 89, no. 3, p. 476. https://doi.org/10.1016/j.ijrobp.2013.12.022

    Article  Google Scholar 

  18. Schonberg, R.G., Deruyter, H., Fowkes, W.R., Johnson, W.A., Miller, R.H., Potter, J.M., and Weaver, J.N., IEEE Trans. Nucl. Sci., 1985, vol. 32, no. 5, p. 3234. https://doi.org/10.1109/TNS.1985.4334330

    Article  ADS  Google Scholar 

  19. Mishin, A.V., Proc. IEEE Particle Accelerator Conference PAC'05, Knoxville, TN, 2005, p. 240.

  20. L-3. https://www.l3harris.com/all-capabilities/magnetrons.

  21. CPI Power Tubes. https://www.cpii.com/product.cfm/8/2.

  22. Sobenin, N.P. and Zverev, B.V., Electrodynamic Characteristics of Accelerating Cavities, London: CRC Press, 1999.

    Google Scholar 

  23. Kutsaev, S.V., Eur. Phys. J. Plus, 2021, vol. 136, no. 4, p. 446. https://doi.org/10.1140/epjp/s13360-021-01312-3

    Article  Google Scholar 

  24. Lapostolle, P. and Septier, A.L., Linear Accelerators, North-Holland, 1970.

    Google Scholar 

  25. Karzmark, C.J., Nunan, C.S., and Tanabe, E., Medical Electron Accelerators, New York: McGraw Hill, 1992.

    Google Scholar 

  26. Kutsaev, S.V., Sobenin, N.P., Zavadtsev, A.A., Bolgov, R.O., and Davydov, P.K., Probl. At. Sci. Technol., 2010, vol. 54, no. 3, p. 48.

    Google Scholar 

  27. Kutsaev, S.V., Smirnov, A.Yu., Bolgov, R.O., Gusarova, M.A., Kamenschikov, D.S., and Sobenin, N.P., Proc. 25th Linear Accelerator Conference, LINAC 2010, Tsukuba, 2010, p. 202.

  28. Kaminskii, V.I., Lalayan, M.V., and Sobenin, N.P., Uskoryayushchie struktury (Accelerating Structures), Moscow: National Research Nuclear Univ. “Moscow Engineering Physics Institute,” 2005.

  29. Kaminskii, V.I. and Kutsaev, S.V., Yad. Fiz. Inzh., 2011, vol. 2, no. 2, p. 154.

    Google Scholar 

  30. Kutsaev, S.V., Sobenin, N.P., Smirnov, A.Yu., Kamenschikov, D.S., Gusarova, M.A., Nikolskiy, K.I., Zavadtsev, A.A., and Lalayan, M.V., Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 636, no. 1, p. 13. https://doi.org/10.1016/j.nima.2011.01.047

    Article  Google Scholar 

  31. Chou, P.J., Bowden, G.B., Copeland, M.R., Henke, H., Menegat, A., and Siemann, R.H., Proc. IEEE Particle Accelerator Conference PAC'97, Vancouver, 1997, IEEE, 1998, vol. 1, p. 464. https://doi.org/10.1109/PAC.1997.749688

  32. Young, L. and Billen, J., Proc. 2003 IEEE Particle Accelerator Conference, Portland, OR, 2003, vol. 5, p. 3521. https://doi.org/10.1109/PAC.2003.1289968

  33. Zavadtsev, A.A., Zavadtsev, D.A., Kaminskii, V.I., Smirnov, A.Yu., and Sobenin, N.P., Vysokochastotnye deflektory dlya diagnostiki puchka zaryazhennykh chastits (High-Frequency Deflectors for Diagnosing Charged Particles Beam), Moscow: National Research Nuclear Univ. “Moscow Engineering Physics Institute,” 2014.

  34. Hanna, S., RF Linear Accelerators for Medical and Industrial Applications, Boston: Artech House, 2012.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks his colleagues who took part in this work: Mr. Salime Boucher and Mr. Ronald Agustsson.

Funding

This work was funded by the US Department of Energy, grant number DE-SC0017687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kutsaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsaev, S.V. Selection of the Accelerating Structure of a Small Linear Electron Accelerator for Radiotherapy. Instrum Exp Tech 64, 869–876 (2021). https://doi.org/10.1134/S0020441221060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221060087

Navigation