Skip to main content
Log in

Resorption Dynamics of Hydroxyapatite-, Wollastonite-, and Gelatin-Based Granules in Tris-Buffer

  • Published:
Inorganic Materials Aims and scope

Abstract—

Results of an in vitro study demonstrate that, when brought in contact with tris-buffer, granules based on gelatin and synthetic ceramic powders containing varied percentages of Са10(РО4)6(ОН)2 and β-СаSiO3 rapidly degrade and swell, increasing in size by up to a factor of 1.2. After that, they gradually degrade, releasing calcium ions and phosphate and silicate anions to the solution. The systems with materials containing 20 to 60 wt % calcium silicate have been found to differ little in the concentrations of these ions. The weight loss of the composites, due to dissolution of the mineral components and gelatin, has been shown to exceed that of the apatite and wollastonite granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Morsy, R., Abuelkhair, R., and Elnimr, T., A facile route to the synthesis of hydroxyapatite/wollastonite composite powders by a two-step coprecipitation method, Silicon, 2015, vol. 9, pp. 637–641. https://doi.org/10.1007/s12633-015-9339-y

    Article  CAS  Google Scholar 

  2. Baştan, F.E., Karaarslan, O., and Üstel, F., Production and characterization of wollastonite particles reinforced hydroxyapatite composite granules for biomedical applications, DEU FMD, 2021, vol. 23 (67), pp. 1–9. https://doi.org/10.21205/deufmd.2021236701

    Article  Google Scholar 

  3. Padmanabhann, S.K., Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A., and Licciulli, A., Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering, Ceram. Int., 2013, vol. 39, pp. 619–627. https://doi.org/10.1016/j.ceramint.2012.06.073

    Article  CAS  Google Scholar 

  4. Buriti, J. da S., Barreto, M.E.V., Santos, K.O., and Fook, M.V.L., Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites, J. Therm. Anal. Calorim., 2018, vol. 134, pp. 1521–1530. https://doi.org/10.1007/s10973-018-7498-y

    Article  CAS  Google Scholar 

  5. Yu, H., Ning, C., Lin, K., and Chen, L., Preparation and characterization of PLLA/CaSiO3/apatite composite films, Int. J. Appl. Ceram. Technol., 2012, vol. 9, pp. 133–142. https://doi.org/10.1111/j.1744-7402.2010.02606.x

    Article  CAS  Google Scholar 

  6. Encinas-Romero, M.A., Aguayo-Salinas, S., Castillo, S.J., Castillon-Barraza, F.F., and Castano, V.M., Synthesis and characterization of hydroxyapatite–wollastonite composite powders by sol–gel processing, Int. J. Appl. Ceram. Technol., 2008, vol. 5, pp. 401–411. https://doi.org/10.1111/j.1744-7402.2008.02212.x

    Article  CAS  Google Scholar 

  7. Lin, K., Zhang, M., Zhai, W., Qu, H., and Chang, J., Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair, J. Am. Ceram. Soc., 2011, vol. 94, pp. 99–105. https://doi.org/10.1111/j.1551-2916.2010.04046.x

    Article  CAS  Google Scholar 

  8. Encinas-Romero, M.A., Aguayo-Salinas, S., Valenzuela-Garcia, J.L., Payan, S.R., and Castillon-Barraza, F.F., Mechanical and bioactive behavior of hydroxyapatite–wollastonite sintered composites, Int. J. Appl. Ceram. Technol., 2010, vol. 7, pp. 164–177. https://doi.org/10.1111/j.1744-7402.2009.02377.x

    Article  CAS  Google Scholar 

  9. Ryu, H.S., Lee, J.K., Kim, H., and Hong, K.S., New type of bioactive materials: hydroxyapatite/α-wollastonite composites, J. Mater. Res., 2005, vol. 20, pp. 1154–1162. https://doi.org/10.1557/JMR.2005.0144

    Article  CAS  Google Scholar 

  10. Chen, Z., Zhai, J., Wang, D., and Chen, C., Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser, Ceram. Int., 2018, vol. 44, no. 9, pp. 10204–10209. https://doi.org/10.1016/j.ceramint.2018.03.013

    Article  CAS  Google Scholar 

  11. Beheri, H.H., Mohamed, K.R., and El-Bassyouni, G.T., Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials, Mater. Des., 2013, vol. 44, pp. 461–468. https://doi.org/10.1016/j.matdes.2012.08.020

    Article  CAS  Google Scholar 

  12. Kokubo, T. and Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, vol. 27, pp. 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  13. Shevchenko, A.E., Solonenko, A.P., Blesman, A.I., Polonyankin, D.A., and Chikanova, E.S., Synthesis and physicochemical investigation of hydroxyapatite and wollastonite composite granules, J. Phys.: Conf. Ser., 2021, vol. 1791, p. 012119. https://doi.org/10.1088/1742-6596/1791/1/012119

    Article  CAS  Google Scholar 

  14. Komlev, V.S., Barinov, S.M., and Koplik, E.V., A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release, Biomaterials, 2002, vol. 23, pp. 3449–3454. https://doi.org/10.1016/S0142-9612(02)00049-2

    Article  CAS  PubMed  Google Scholar 

  15. Hasan, M.L., Padalhin, A.R., Kim, B., and Lee, B.-T., Preparation and evaluation of BCP–CSD–agarose composite microsphere for bone tissue engineering, J. Biomed. Mater. Res. B, 2019, vol. 9999B, pp. 1–10. https://doi.org/10.1002/jbm.b.34318

    Article  CAS  Google Scholar 

  16. Regulatory Guidelines 52.24.433-2005: Silicon mass concentration in surface water; technique of photometric determination in the form of yellow silicomolybdic acid, 2005.

  17. Dorozhkin, S.V., Dissolution mechanism of calcium apatites in acids: a review of literature, World J. Methodol., 2012, vol. 26, no. 2 (1), pp. 1–17. https://doi.org/10.5662/wjm.v2.i1.1

  18. Niu, L., Jiao, K., Wang, T., Zhang, W., Camilleri, J., Bergeron, B.E., Feng, H., Mao, J., Chen, J., Pashley, D.H., and Tay, F.R., A review of the bioactivity of hydraulic calcium silicate cements, J. Dent., 2014, vol. 42, no. 5, pp. 517–533. https://doi.org/10.1016/j.jdent.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ni, S., Lin, K., Chang, J., and Chou, L., β-CaSiO3/ β‑Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies, J. Biomed. Mater. Res. A, 2008, vol. 85, no. 1, pp. 72–82. https://doi.org/10.1002/jbm.a.31390

    Article  CAS  PubMed  Google Scholar 

  20. Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Chemistry of calcium phosphate-based inorganic biomaterials, Ross. Khim. Zh., 2004, vol. 48, no. 4, pp. 52–64.

    CAS  Google Scholar 

  21. Hossana, M.J., Gafurb, M.A., Kadirb, M.R., and Karima, M.M., Preparation and characterization of gelatin–hydroxyapatite composite for bone tissue engineering, IJET–IJENS, 2014, vol. 14, no. 1, pp. 24–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Solonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonenko, A.P., Shevchenko, A.E. & Polonyankin, D.A. Resorption Dynamics of Hydroxyapatite-, Wollastonite-, and Gelatin-Based Granules in Tris-Buffer. Inorg Mater 59, 329–336 (2023). https://doi.org/10.1134/S0020168523030147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030147

Keywords:

Navigation