Skip to main content
Log in

Growth of Y3Fe5O12 films on Si with AlO x and SiO2 buffer layers by ion beam sputtering

  • Published:
Inorganic Materials Aims and scope

Abstract

Amorphous yttrium iron garnet films ranging in thickness from 100 to 600 nm have been produced on single-crystal silicon substrates by sputtering a polycrystalline target with the composition Y3Fe5O12 (yttrium iron garnet) by a mixture of argon and oxygen ions. Before film growth, AlO x or SiO2 buffer layers up to 0.8 μm in thickness were grown on the Si surface. The heterostructures were crystallized by annealing in air at a temperature of 950°C for 30 min. The properties of the films were studied by magneto-optical techniques, using Kerr effect and ferromagnetic resonance measurements. The Gilbert damping parameter reached 2.8 × 10–3 and the effective planar magnetic anisotropy field was independent of the nature of the buffer layer. This suggests that the thin-film heterostructures obtained in this study are potentially attractive for use in spin-wave semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glass, H.L., Ferrite films for microwave and millimeter-wave devices, Proc. IEEE, 1988, vol. 76, no. 2, pp. 151–158.

    Article  CAS  Google Scholar 

  2. Magnonics: From Fundamentals to Applications, Demokritov, S.O. and Slavin, A.N., Eds., Topics in Applied Physics, vol. 125, Berlin: Springer, 2013.

  3. Stupakiewicz, A., Pashkevich, M., Maziewski, A., Stognij, A., and Novitskii, N., Spin precession modulation in a magnetic bilayer, Appl. Phys. Lett., 2012, vol. 101, paper 262406.

    Article  Google Scholar 

  4. Landolt, H. and Börnstein, R., Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, 27/e, Berlin: Springer, 1975.

    Google Scholar 

  5. Sun, Y., Song, Y.Y., Chang, H., Kabatek, M., Jantz, M., Schneider, W., Wu, M., Schultheiss, H., and Hoffmann, A., Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films, Appl. Phys. Lett., 2012, vol. 101, paper 152405.

    Article  Google Scholar 

  6. Manuilov, S.A., Khartsev, S.I., and Grishin, A.M., Pulsed laser deposited Y3Fe5O12 films: nature of magnetic anisotropy I, J. Appl. Phys., 2009, vol. 106, paper 123917.

    Article  Google Scholar 

  7. Yamamoto, S., Kuniki, H., Kurisu, H., Matsuura, M., and Jang, P., Post-annealing effect of YIG ferrite thinfilms epitaxially grown by reactive sputtering, Phys. Status Solidi A, 2004, vol. 201, no. 4, pp. 1810–1814.

    Article  CAS  Google Scholar 

  8. Bhoi, B., Venkataramani, N., Aiyar, R.P.R.C., and Prasad, Sh., FMR and magnetic studies on polycrystalline YIG thin films deposited using pulsed laser, IEEE Trans. Magn., 2013, vol. 49, no. 3, pp. 990–994.

    Article  CAS  Google Scholar 

  9. Popova, E., Keller, N., Gendron, F., Guyot, M., Brianso, M.-C., Dumond, Y., and Tessier, M., Structure and magnetic properties of yttrium-iron-garnet thin films prepared by laser deposition, J. Appl. Phys., 2001, vol. 90, no. 3, pp. 1422–1428.

    Article  CAS  Google Scholar 

  10. Stognij, A.I., Tokarev, V.V., and Mitin, Yu.N., The synthesis of metal oxide films from compound powder targets, Mater. Res. Soc. Proc., 1991, vol. 236, pp. 331–334.

    Article  Google Scholar 

  11. Yang, Q.-H., Zhang, H.-W., Wen, Q.-Y., and Liu, Y.-L., Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method, J. Appl. Phys., 2010, vol. 108, paper 073901.

    Article  Google Scholar 

  12. Boudiar, T., Capraro, S., Rouiller, T., Blanc-Mignon, M.-F., Payet-Gervy, B., Le Berre, M., and Rousseau, J.-J., YIG thin films for magneto-optical and microwave applications, Phys. Status Solidi C, 2004, vol. 1, no. 12, pp. 3347–3351.

    Article  CAS  Google Scholar 

  13. International Centre for Diffraction Data, 1998, JCPDS, card no. 43-0507.

  14. Zvezdin, A.K. and Kotov, V.A., Magnitooptika tonkikh plenok (Magneto-optics of Thin Films), Moscow: Nauka, 1988.

    Google Scholar 

  15. Pashkevich, M., Stupakiewicz, A., Kirilyuk, A., Maziewski, A., Stognij, A., Novitskii, N., Kimel, A., and Rasing, Th., Tunable magnetic properties in ultrathin Co/garnet heterostructures, J. Appl. Phys., 2012, vol. 111, paper 023913.

    Article  Google Scholar 

  16. Schlömann, E., Inhomogeneous broadening of ferromagnetic resonance lines, Phys. Rev., 1969, vol. 182, pp. 632–645.

    Article  Google Scholar 

  17. Hook, H.J.V. and Euler, F., Anisotropy line broadening in polycrystalline V–In substituted YIG, J. Appl. Phys., 1969, vol. 40, pp. 4001–4005.

    Article  Google Scholar 

  18. VLSI Technology, Sze, S.M., Ed., New York: McGraw-Hill, 1983, vol.1.

  19. Anders, W. and Biller, E., Ferromagnetic resonance linewidth in bulk nickel for various angles between the static magnetic field and the surface of the sample, J. Phys. Colloques, 1971, vol. 32, pp. S1-774–S1-776.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stognij.

Additional information

Original Russian Text © A.I. Stognij, N.N. Novitskii, O.L. Golikova, A.V. Bespalov, R. Gieniusz, A. Maziewski, A. Stupakiewicz, M.N. Smirnova, V.A. Ketsko, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 10, pp. 1093–1098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stognij, A.I., Novitskii, N.N., Golikova, O.L. et al. Growth of Y3Fe5O12 films on Si with AlO x and SiO2 buffer layers by ion beam sputtering. Inorg Mater 53, 1069–1074 (2017). https://doi.org/10.1134/S0020168517100156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517100156

Keywords

Navigation