Skip to main content
Log in

Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

Fe3O4 magnetic nanoparticles being used as seeding materials, Ag+ ions on the Fe3O4 magnetic nanoparticles reduced to the metal form by tartaric acid using heated treatment. Thus, Fe3O4/Ag composite core-shell magnetic nanoparticles were synthesized. The products were characterized by transmission electron microscope (TEM) and x-ray diffraction (XRD). Both TEM and XRD results showed that the Ag nanoparticles were well distributed on the surface of Fe3O4 magnetic nanoparticles. The size for Fe3O4/Ag composite magnetic nanoparticles which were spherical shape was ≃40 nm. Furthermore, the magnetic properties of samples were characterized on a vibrating sample magnetometer. Under optimal conditions, Fe3O4/Ag composite nanoparticles showed higher magnetism than pure Fe3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arturo, M., Lopez, Q., and Jose, R., Magnetic Iron Oxide Nanoparticles Synthesized via Microemulsions, J. Colloid Interface Sci., 1993, vol. 158, no. 2, pp. 446–451.

    Article  Google Scholar 

  2. Chiang, C.L. and Sung, C.S., Purification of Transfection-Grade Plasmid DNA from Bacterial Cells with Superparamagnetic Nanoparticles, J. Magn. Magn. Mater., 2006, vol. 302, no. 1, pp. 7–13.

    Article  CAS  Google Scholar 

  3. Hai, Y.B., Yuan, H.Y., and Xiao, D., Preparation of Fe3O4 Nanoparticles by Microwave Method, Chem. Res. Appl., 2006, vol. 18, no. 6, pp. 744–746.

    CAS  Google Scholar 

  4. Aoshima, K. and Wang, S.X., FeO and Its Magnetic Tunneling Junctions Grown by Ion Beam Deposition, J. Appl. Phys., 2003, vol. 93, no. 10, pp. 7954–7956.

    Article  CAS  Google Scholar 

  5. Morton, S.A., Waddill, G.D., Kim, S., et al., Spin-Resolved Photoelectron Spectroscopy of Fe3O4, Surf. Sci., 2002, vol. 513, no. 3, pp. 451–457.

    Article  Google Scholar 

  6. Shebanova, O.N. and Lazor, P., Vibrational Modeling of the Thermodynamic Properties of Magnetite (Fe3O4) at High Pressure from Raman Spectroscopic Study, J. Chem. Phys., 2003, vol. 119, no. 12, pp. 6100–6110.

    Article  CAS  Google Scholar 

  7. Schrupp, D., Sing, M., Tsunekawa, M., et al., High-Energy Photoemission on Fe3O4: Small Polaron Physics and the Verwey Transition, Europhys. Lett., 2005, vol. 70, no. 6, pp. 789–795.

    Article  CAS  Google Scholar 

  8. Deng, J.G., He, C.L., Peng, Y.X., et al., Magnetic and Conductive Fe3O4-Polyaniline Nanoparticles with Core-Shell Structure, Synth. Met., 2003, vol. 139, nos. 2–5, pp. 295–301.

    Article  CAS  Google Scholar 

  9. Chao, D.M., Lu, X.F., Chen, J.Y., et al., Anthranilic Acid Assisted Preparation of Fe3O4-Poly(aniline-co-o-anthranilic acid) Nanoparticles, J. Appl. Polym. Sci., 2006, vol. 102, no. 2, pp. 1666–1671.

    Article  CAS  Google Scholar 

  10. Huang, Z.B. and Tang, F.Q., Preparation, Structure, and Magnetic Properties of Polystyrene Coated by Fe3O4 Nanoparticles, J. Colloid Interface Sci., 2004, vol. 275, no. 1, pp. 142–147.

    Article  CAS  Google Scholar 

  11. Chen, W., Li, X.G., Wang, Z.Q., and Zou, W.Q., Magnetic and Conducting Particles: Preparation of Polypyrrole Layer on Fe3O4 Nanospheres, Appl. Surf. Sci., 2003, vol. 218, nos. 1–4, pp. 215–221.

    CAS  Google Scholar 

  12. Li, J., Zeng, H., Sun, S.H., et al., Analyzing the Structure of CoFe-Fe3O4 Core-Shell Nanoparticles by Electron Imaging and Diffraction, J. Phys. Chem. B, 2004, vol. 108, no. 37, pp. 14005–14008.

    Article  CAS  Google Scholar 

  13. Cui, Y.L., Hu, D.D., Fang, Y., and Ma, J.B., Preparation and Mechanism of Fe3O4/Au Core/Shell Super-paramagnetic Microspheres, Sci. China, Ser. B, 2001, vol. 44, no. 4, pp. 404–410.

    Article  CAS  Google Scholar 

  14. Du, G.H., Liu, Z.L., Xia, X., et al., Characterization and Application of Fe3O4/SiO2 Nanocomposites, J. Sol.-Gel. Sci. Technol., 2006, vol. 39, no. 3, pp. 285–291.

    Article  CAS  Google Scholar 

  15. Hyun, S., Ko, T., Han, K., and Oh, J.H., A Wet-Chemical Preparation of a Fe3O4-CuO Composite Powder in Core-Shell Structure, Phys. Status Solidi C, 2004, vol. 1, no. 12, pp. 3468–3471.

    Article  CAS  Google Scholar 

  16. Zhang, X.Y. and Chen, Y.J., Influence of Temperature on Percolative Behavior in Fe3O4/C Composite, J. Magn. Magn. Mater., 2004, vol. 271, nos. 2–3, pp. 184–189.

    Article  Google Scholar 

  17. Osterloh, F.E., Hiramatsu, H., Dumas, R.K., and Liu, K., Fe3O4-LiMo3Se3 Nanoparticle Clusters As Superparamagnetic Nanocompasses, Langmuir, 2005, vol. 21, no. 21, pp. 9709–9713.

    Article  CAS  Google Scholar 

  18. Sorenson, T.A., Morton, S.A., Waddill, G.D., and Switzer, J.A., Epitaxial Electrodeposition of Fe3O4 Thin Films on the Low-Index Planes of Gold, J. Am. Chem. Soc., 2002, vol. 124, no. 25, pp. 7604–7609.

    Article  CAS  Google Scholar 

  19. Shimizu, T., Kitayama, Y., and Kodama, T., Thermochemical Conversion of CH4 to C2-Hydrocarbons and H2 over SnO2/Fe3O4/SiO2 in Methane-Water Co-Feed System, Energy Fuels, 2001, vol. 15, no. 2, pp. 463–469.

    Article  CAS  Google Scholar 

  20. Shah, P., Sohma, M., Kawaguchi, K., and Yangguchi, I., Thermopower in Magnetic and Nonmagnetic Rare Earth Intermetallic Compounds, J. Magn. Magn. Mater., 2002, vol. 24, no. 1, pp. 1–6.

    Article  Google Scholar 

  21. Cosultchi, A., Ascencio-Gutiérrez, J.A., Reguera, E., et al., On a Probable Catalytic Interaction between Magnetite (Fe3O4) and Petroleum, Energy Fuels, 2006, vol. 20, no. 3, pp. 1281–1286.

    Article  CAS  Google Scholar 

  22. Bruce, I.J., Taylor, J., Todd, M., et al., Synthesis, Characterisation, and Application of Silica-Magnetite Nanocomposites, J. Magn. Magn. Mater., 2004, vol. 284, pp. 145–160.

    Article  CAS  Google Scholar 

  23. Aliev, F.G., Correa-Duarte, M.A., Mamedov, A., et al., Layer-by-Layer Assembly of Core-Shell Magnetite Nanoparticles: Effect of Silica Coating on Interparticle Interactions and Magnetic Properties, Adv. Mater., 1999, vol. 11, no. 2, pp. 1006–1010.

    Article  CAS  Google Scholar 

  24. Abu-Much, R., Meridor, U., Frydman, A., and Gedanken, A., Formation of a Three-Dimensional Microstructure of Fe3O4-Poly(vinyl alcohol) Composite by Evaporating the Hydrosol under a Magnetic Field, J. Phys. Chem. B, 2006, vol. 110, no. 16, pp. 8194–8203.

    Article  CAS  Google Scholar 

  25. Yu, H., Chen, M., Rice, P.M., et al., Dumbbell-Like Bifunctional Au-Fe3O4 Nanoparticles, Nano Lett., 2005, vol. 5, no. 2, pp. 379–382.

    Article  CAS  Google Scholar 

  26. Yasui, S., Tsujimoto, M., Itoh, K., and Ohno, A., Quenching of a Photosensitized Dye through Single-Electron Transfer from Trivalent Phosphorus Compounds, J. Org. Chem., 2000, vol. 65, no. 15, pp. 4715–4720.

    Article  CAS  Google Scholar 

  27. Kawasaki, M. and Mine, S., Enhanced Molecular Fluorescence near Thick Ag Island Film of Large Pseudotabular Nanoparticles, J. Phys. Chem. B, 2005, vol. 109, no. 36, pp. 17254–17261.

    Article  CAS  Google Scholar 

  28. Lesniak, W., Bielinska, A.U., Sun, K., et al., Silver/Dendrimer Nanocomposites As Biomarkers: Fabrication, Characterization, In Vitro Toxicity, and Intracellular Detection, Nano Lett., 2005, vol. 5, no. 11, pp. 2123–2130.

    Article  CAS  Google Scholar 

  29. Wygladacz, K., Radu, A., Xu, C., et al., Fiber-Optic Microsensor Array Based on Fluorescent Bulk Optode Microspheres for the Trace Analysis of Silver Ions, Anal. Chem., 2005, vol. 77, no. 15, pp. 4706–4712.

    Article  CAS  Google Scholar 

  30. Li, K.H., Xu, Z.T., Xu, H.H., et al., Three-Dimensional Nets from Star-Shaped Hexakis(Arylthio)Triphenylene Molecules and Silver(I) Salts, Inorg. Chem., 2006, vol. 45, no. 3, pp. 1032–1037.

    Article  CAS  Google Scholar 

  31. Endo, T., Yomokazu, T., and Esumi, K., Synthesis and Catalytic Activity of Gold-Silver Binary Nanoparticles Stabilized by PAMAM Dendrimer, J. Colloid Interface Sci., 2005, vol. 286, no. 2, pp. 602–609.

    Article  CAS  Google Scholar 

  32. Rivas, J., Garcia-Bastida, A.J., Lopez-Quintela, M.A., and Ramos, C., Magnetic Properties of Co/Ag Core/Shell Nanoparticles Prepared by Successive Reactions in Microemulsions, J. Magn. Magn. Mater., 2006, vol. 300, no. 1, pp. 185–191.

    Article  CAS  Google Scholar 

  33. Liu, F.K., Tsai, M.H., Hsu, Y.C., and Chu, T.C., Analytical Separation of Au/Ag Core/Shell Nanoparticles by Capillary Electrophoresis, J. Chromatogr., A, 2006, vol. 1133, nos. 1–2, pp. 340–346.

    Article  CAS  Google Scholar 

  34. Bringley, J.F., Rajeswaran, M., Olson, L.P., and Liebert, N.M., Silver-Halide/Organic-Composite Structures: Toward Materials with Multiple Photographic Functionalities, J. Solid State Chem., 2005, vol. 178, no. 10, pp. 3074–3089.

    Article  CAS  Google Scholar 

  35. Cai, W.P., Tan, M., Wang, G.Z., and Zhang, L.D., Synthesis of Silver/Silica Mesoporous Composite, Chin. Sci. Bull., 1996, vol. 41, no. 22, pp. 1868–1872.

    CAS  Google Scholar 

  36. Tian, C.G., Wang, E.B., Kang, Z.H., et al., Synthesis of Ag-Coated Polystyrene Colloids by an Improved Surface Seeding and Shell Growth Technique, J. Solid State Chem., 2006, vol. 179, no. 11, pp. 3270–3276.

    Article  CAS  Google Scholar 

  37. Tang, D.P., Yuan, R., and Chai, Y.Q., Magnetic Core-Shell Fe3O4/Ag Nanoparticles Coated Carbon Paste Interface for Studies of Carcinoembryonic Antigen in Clinical Immunoassay, J. Phys. Chem., 2006, vol. 110, no. 24, pp. 11640–11646.

    CAS  Google Scholar 

  38. Mandal, M., Kundu, S., Ghosh, S., et al., Magnetite Nanoparticles with Tunable Gold or Silver Shell, J. Colloid Interface Sci., 2005, vol. 286, no. 1, pp. 187–194.

    Article  CAS  Google Scholar 

  39. Hsu, J.H., Chen, S.Y., and Chang, C.R., Temperature Dependence of Magnetoresistance Effect in Ag-Fe3O4 Composites Films, J. Magn. Magn. Mater., 2002, vols. 272–276, no. 3, pp. 1772–1773.

    Google Scholar 

  40. Gatel, C. and Snoeck, E., Comparative Study of Pt, Au, and Ag Growth on Fe3O4 (001) Surface, Surf. Sci., 2006, vol. 600, no. 13, pp. 2650–2662.

    Article  CAS  Google Scholar 

  41. Zhang, L., Dou, Y.H., and Gu, H.C., Synthesis of Ag-Fe3O4 Heterodimeric Nanoparticles, J. Colloid Interface Sci., 2006, vol. 297, no. 2, pp. 660–664.

    Article  CAS  Google Scholar 

  42. Cui, X.G., Hu, X.K., Xu, M.H., et al., Enhanced Magnetoresistance Effects in Bulk Polycrystalline Ag-Added Magnetite, Solid State Commun., 2006, vol. 138, no. 1, pp. 30–34.

    Article  CAS  Google Scholar 

  43. Zhang, X.X., Qin, B.X., Wen, G.H., et al., Magnetic Colloids Composed of Metal Nanoparticles of Fe, Mater. Sci. Eng., C, 2001, vol. 16, nos. 1–2, pp. 119–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Xiao.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.H., Zhou, Z.D., Yu, X. et al. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles. Inorg Mater 44, 291–295 (2008). https://doi.org/10.1134/S002016850803014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016850803014X

Keywords

Navigation