Skip to main content
Log in

Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations

  • Published:
Inorganic Materials Aims and scope

Abstract

Hydroxyapatite, Ca10(PO4)6(OH)2, powders with enhanced sinterability have been synthesized through precipitation from calcium nitrate and ammonium hydrogen phosphate solutions at pH 9, t= 60°C, and a Ca/P atomic ratio of 1.67, and their properties have been studied: phase composition, particle size distribution, loose density, and green density. The initial solution concentration is shown to influence the properties of the powders and the ceramics fabricated from them. Comparison of the particle size distributions in disaggregated powders and the grain size distributions in the ceramics indicates that the ceramics inherit the structure of the corresponding powders. Optimizing the synthesis conditions in order to enhance the sinterability of the powders, we obtained green compacts with the highest shrinkage rate in the range 850–950°C and shrinkage onset at 600°C, which is 100–150°C lower in comparison with powders synthesized in earlier studies from calcium nitrate and ammonium hydrogen phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hench, L.L., Bioceramics, J. Am. Ceram. Soc., 1998, vol. 81, no. 7, pp. 1705–1728.

    Article  CAS  Google Scholar 

  2. Sarkisov, P.D. and Mikhailenko, N.Yu., Bioactive Inorganic Materials for Bone Substitution, Tekh. Tekhnol. Silikatov, 1994, vol. 1, no. 2, pp. 5–11.

    Google Scholar 

  3. Putlyaev, V.I. and Safronova, T.V., Next-Generation Calcium Phosphate Biomaterials: The Role of Chemical and Phase Compositions, Steklo Keram., 2006, no. 3, pp. 30–33.

  4. Belyakov, A.V., Structure Evolution in Ceramic Processing, Novye Ogneupory, 2006, no. 1, pp. 56–61.

  5. Inorganic Phosphate Materials, Kanazawa, T., Ed., Amsterdam: Elsevier, 1994.

    Google Scholar 

  6. Tret’yakov, Yu.D. and Putlyaev, V.I., Vvedenie v khimiyu tverdofaznykh materialov (Introduction to the Chemistry of Solids), Moscow: Mosk. Gos. Univ., 2006.

    Google Scholar 

  7. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium-Phosphate-Based Bioceramics), Moscow: Nauka, 2005.

    Google Scholar 

  8. Orlovskii, V.P., Kurdyumov, S.G., and Slivko, O.I., Synthesis, Properties, and Applications of Calcium Hydroxyapatite, Stomatologiya, 1996, vol. 75, no. 5, pp. 68–73.

    CAS  Google Scholar 

  9. Mal’kov, M.A., Lipochkin, S.V., Mosin, Yu.M., et al., Hydroxyapatite Ceramics for Medical Applications, Steklo Keram., 1991, no. 7, pp. 28–29.

  10. Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Advances in Calcium Phosphate Biomaterials, Ross. Khim. Zh., 2000, vol. 44, no. 6, part 2, pp. 32–46.

    CAS  Google Scholar 

  11. Melikhov, I.V., Komarov, V.V., Severin, A.V., et al., Two-Dimensional Crystalline Hydroxyapatite, Dokl. Akad. Nauk, 2000, vol. 373, no. 3, p. 355.

    CAS  Google Scholar 

  12. Raynaud, S., Champion, E., Bernache-Assollant, D., and Thomas, P., Calcium Phosphate Apatites with Variable Ca/P Atomic Ratio: I. Synthesis, Characterisation, and Thermal Stability of Powders, Biomaterials, 2002, vol. 23, pp. 1065–1072.

    Article  CAS  Google Scholar 

  13. Balkevich, V.L., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Stroiizdat, 1984.

    Google Scholar 

  14. Liu, C., Huang, Y., Shen, W., and Cui, J., Kinetics of Hydroxyapatite Precipitation at pH 10 to 11, Biomaterials, 2001, vol. 22, pp. 301–306.

    Article  CAS  Google Scholar 

  15. Rodriguez-Lorenzo, L.M. and Vallet-Regi, M., Controlled Crystallization of Calcium Phosphate Apatites, Chem. Mater., 2000, vol. 12, pp. 2460–2465.

    Article  CAS  Google Scholar 

  16. Koutsopoulos, S., Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods, J. Biomed. Mater. Res., 2002, vol. 62, pp. 600–612.

    Article  CAS  Google Scholar 

  17. Klyuchnikov, N.G., Rukovodstvo po neorganicheskomu sintezu (Practical Guide to Inorganic Synthesis), Moscow: Khimiya, 1965.

    Google Scholar 

  18. Huber, V., Schmeiser, M., Schenk, V.P., et al., Handbuch der präparativen anorganischen Chemie, Stuttgart: Ferdinand Enke, 1978, 3rd ed.

    Google Scholar 

  19. Lukin, E.S., Advanced Dense Oxide Ceramics with Controlled Microstructure: Part I. Effect of Oxide Powder Aggregation on the Sintering and Microstructure of Ceramics, Ogneupory Tekh. Keram., 1996, no. 1, pp. 5–14.

  20. Andrianov, E.I., Metody opredeleniya strukturnomekhanicheskikh kharakteristik poroshkoobraznykh materialov (Structural and Mechanical Characterization of Powder Materials), Moscow: Khimiya, 1982.

    Google Scholar 

  21. Vallet-Regi, M., Rodrigues-Lorenco, L.M., and Salinas, A.J., Synthesis and Characterization of Calcium Deficient Apatite, Solid State Ionics, 1997, vols. 101–103, pp. 1279–1285.

    Article  Google Scholar 

  22. Kurs fizicheskoi khimii (Course in Physical Chemistry), Gerasimov, Ya.I., Ed., Moscow: Khimiya, 1970, vol. 1, pp. 496–503.

    Google Scholar 

  23. Stepuk, A.A. and Veresov, A.V., Effect of Precursor Anions (NO3−, Cl, CH3COO) and Heat Treatment on the Micromorphology of Hydroxyapatite: Potential Applications in Implants, Materialy mezhdunarodnoi shkoly-konferentsii molodykh uchenykh (Proc. Int. Workshop of Young Scientists), Tomsk, 2005, pp. 777–780.

  24. Chander, S. and Fuerstenau, D.W., Interfacial Properties and Equilibria in the Apatite-Aqueous Solution System, J. Colloid Interface Sci., 1979, vol. 70, no. 3, pp. 506–516.

    Article  CAS  Google Scholar 

  25. Tadic, D., Veresov, A., Putlyaev, V.I., and Epple, M., In-Vitro Preparation of Nanocrystalline Calcium Phosphates as Bone Substitution Materials in Surgery, Materialwiss. Werkstofftech., 2003, vol. 34, no. 12, pp. 1048–1051.

    Article  CAS  Google Scholar 

  26. Sherif, F.G. and Via F.A., US Patent 4 764 357, 1988.

  27. Kingery, W.D., Introduction to Ceramics, New York: Wiley, 1965.

    Google Scholar 

  28. Khimicheskaya tekhnologiya keramiki (Chemical Technology of Ceramics), Guzman, I.Ya., Ed., Moscow: Stroimaterialy, 2003, pp. 47–163.

    Google Scholar 

  29. Putlayev, V., Veresov, A., Pulkin, M., et al., Silicon-Substituted Hydroxyapatite Ceramics (Si-HAp): Densification and Grain Growth through the Prism of Sintering Theories, Materialwiss. Werkstofftech., 2006, vol. 37, no. 6, pp. 416–421.

    Article  CAS  Google Scholar 

  30. Bernache-Assollant, D., Ababou, A., Champion, E., and Heughebaert, M., Sintering of Calcium Phosphate Hydroxyapatite Ca10(PO4)6(OH)2: I. Calcination and Particle Growth, J. Eur. Ceram. Soc., 2003, vol. 23, pp. 229–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Additional information

Original Russian Text © T.V. Safronova, M.A. Shekhirev, V.I. Putlyaev, Yu.D. Tret’yakov, 2007, published in Neorganicheskie Materialy, 2007, Vol. 43, No. 8, pp. 1005–1014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronova, T.V., Shekhirev, M.A., Putlyaev, V.I. et al. Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations. Inorg Mater 43, 901–909 (2007). https://doi.org/10.1134/S0020168507080158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168507080158

Keywords

Navigation