Skip to main content
Log in

Nonequilibrium state of highly ionized helium plasma at atmospheric pressure

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

A spectral study of arc helium plasma of atmospheric pressure with the electron density n e ≤ 1017 cm−3 and the ionization degree of ∼0.25 is performed. The character of the population of HeI levels with the excitation energy of 20.96–24.04 eV, which indicates infeasibility of the Boltzmann law with the electron temperature T e for describing the relative population of excited HeI states, is experimentally determined. Due to the experimentally revealed unfitness of the local thermodynamic equilibrium (LTE) model for estimating T e , mixed contours of the HeI 1083 line were divided into the Lorentz and Gaussian components. As a result, both the Stark effect constant that is poorly studied for this line and the temperature of heavy particles T g in the plasma were estimated based on the Doppler component of its Gaussian half-width. As the arc current varied from 200 to 400 A, T g increased from 20000 to 25 500 K, while the increase in the ionization temperature was, in this case, negligible (from 20000 to 21000 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botticher, W., Roder, O., and Wobig, K.H., Z. Phys., 1963, vol. 175, p. 480.

    Article  ADS  Google Scholar 

  2. Plasma Diagnostic Technique, Huddlestone, R.H. and Leonard S.L., Eds., New York: Academic, 1965.

    Google Scholar 

  3. Vitel, Y., Bezzari, M.El., D’yachkov, L.G., and Kurilenkov, Yu.K., Phys. Rev. E, 1998, vol. 58, no. 6, p. 7855.

    Article  ADS  Google Scholar 

  4. Suemitsu, H., Iwaki, K., Takemoto, Y., and Yoshida, E., J. Phys. B: At., Mol. Opt. Phys., 1990, vol. 23, p. 1129.

    Article  ADS  Google Scholar 

  5. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetics of Nonequilibrium Low-Temperature Plasmas, Berlin: Springer-Verlag, 1987.

    Book  Google Scholar 

  6. Kelleher, D.E., J. Quant. Spectrosc. Radiat. Transfer, 1981, vol. 25, p. 191.

    Article  ADS  Google Scholar 

  7. Heading, D.J., Marangos, J.P., and Burgess, D.D., J. Phys. B: At., Mol. Opt. Phys., 1992, vol. 25, p. 4745.

    Article  ADS  Google Scholar 

  8. Sobel’man, I.I., Introduction to the Theory of Atomic Spectra, London: Pergamon, 1972.

    Google Scholar 

  9. Griem, H., Spectral Line Broadening by Plasmas, New York: Academic, 1974.

    Google Scholar 

  10. Bureeva, L.A. and Lisitsa, V.S., Vozmushchennyi atom (A Perturbed Atom), Moscow: IzdAT, 1997.

    Google Scholar 

  11. Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam: Elsevier, 1968.

    Google Scholar 

  12. Jonkers, J. and Mullen, J.A.M., J. Quant. Spectrosc. Radiat. Transfer, 1999, vol. 61, p. 703.

    Article  ADS  Google Scholar 

  13. Jonkers, J., van de Sandle, M., Sola, A., Gamero, A., and van der Mullen, J., Plasma Sources Sci. Technol., 2003, vol. 12, p. 30.

    Article  ADS  Google Scholar 

  14. Jonkers, J., Vos, H.P.C., van der Mullen, J.A.M., and Timmermans, E.A.H., Spectrochim. Acta, Part B, 1996, vol. 51, p. 457.

    Article  ADS  Google Scholar 

  15. Tanabe, K., Haraguchi, H., and Fuwa, K., Spectrochim. Acta, Part B, 1983, vol. 38, nos. 1–2, p. 49.

    Article  ADS  Google Scholar 

  16. Sturgeon, R.E., Willie, S.N., and Luong, V.T., Spectrochim. Acta, Part B, 1991, vol. 46, nos. 6–7, p. 1021.

    Article  ADS  Google Scholar 

  17. Isakaev, E.Kh., Grigor’yants, R.R., Spektor, N.O., and Tyuftyaev, A.S., Teplofiz. Vys. Temp., 1994, vol. 32, no. 4, p. 627.

    Google Scholar 

  18. Isakaev, E.Kh., Sinkevich, O.A., Tyuftyaev, A.S., and Chinnov, V.F., High Temp., 2010, vol. 48, no. 1, p. 97.

    Article  Google Scholar 

  19. Isakaev, E.Kh., Sinkevich, O.A., Spektor, N.O., Tyuftyaev, A.S., Tazikova, T.F., and Khachaturova, A.G., High Temp., 2010, vol. 48, no. 6, p. 777.

    Article  Google Scholar 

  20. Belevtsev, A.A., Isakaev, E.Kh., Markin, A.V., Khaimin, V.A., and Chinnov, V.F., High Temp., 2000, vol. 38, no. 5, p. 667.

    Article  Google Scholar 

  21. Konjevic, N., Dimitrijevic, M.S., and Wiese, W.L., J. Phys. Chem. Ref. Data, 1984, vol. 13, p. 619.

    Article  ADS  Google Scholar 

  22. Nizkotemperaturnaya plazma. Tom 1. Teoriya stolba elektricheskoi dugi (Low-Temperature Plasma: Volume 1. The Theory of Arc Discharge Column), Engel’sht, V.S. and Uryukov, B.A., Eds., Novosibirsk: Nauka, 1990.

    Google Scholar 

  23. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer-Verlag, 1991.

    Book  Google Scholar 

  24. Spitzer, L.S., Physics of Fully Ionized Gases, New York: Interscience, 1956.

    MATH  Google Scholar 

  25. Drawin, H.W. and Emard, F., Z. Phys., 1971, vol. 243, p. 326.

    Article  ADS  Google Scholar 

  26. Asinovskii, E.I., Kirillin, A.V., and Nizovskii, V.L., Stabilizirovannye elektricheskie dugi i ikh primenenie v teplofizicheskom eksperimente (Stabilized Electric Arcs and Their Application in Thermophysical Experiments), Moscow: Nauka, 2008.

    Google Scholar 

  27. Konjevic, N. and Roberts, J.R., J. Phys. Chem. Ref. Data, 1976, vol. 5, p. 209.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Chinnov.

Additional information

Original Russian Text © E.Kh. Isakaev, V.F. Chinnov, M.A. Sargsyan, D.I. Kavyrshin, 2013, published in Teplofizika Vysokikh Temperatur, 2013, Vol. 51, No. 2, pp. 163–169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isakaev, E.K., Chinnov, V.F., Sargsyan, M.A. et al. Nonequilibrium state of highly ionized helium plasma at atmospheric pressure. High Temp 51, 141–146 (2013). https://doi.org/10.1134/S0018151X13020090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X13020090

Keywords

Navigation