Skip to main content
Log in

Quantum-chemical study of the photoisomerization and photocyclization reactions of styrylquinolines: Potential energy surfaces

  • Photochemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The cross sections of potential energy surfaces (PES) for the S0 and S1 states were calculated by the semiempirical PM3 and PM3-CI (8 × 8) methods, respectively, along the reaction coordinate of the isomerization and cyclization of 2- and 4-styrylquinolines (SQ). The PES of the S0 state exhibits three minima separated by the transition-state barriers of isomerization and cyclization corresponding to three isomeric SQ forms, the E- and Z-isomers and the dihydrogenated cyclic product. On the PES of the S1 state, the “perpendicular minimum” at dihedral angle values of ∼ 90° corresponds to the transition state of the isomerization reaction and the pericyclic minimum with a distance of 1.7–2.0 Å between the atoms involved in cyclization corresponds to the transition state of the cyclization reaction. With simultaneous scanning of the PES of the S1 state along the isomerization and cyclization reaction coordinates, the minimal-energy path was found for 4SQ, which makes it possible to explain the formation of the photocyclization product in the single-photon process upon irradiation of the E-isomer. It was found that the PM3 method overestimates the stability of the structures in which the aromatic ring is oriented perpendicular to the plane of the molecule, resulting in virtual minima on the PES of the S1 states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee, V.M, Izv. Akad. Nauk, Ser. Khim., 2008, p. 2535.

  2. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee, V.M., J. Mat. Chem., 2009, vol. 19, p. 7721.

    Article  CAS  Google Scholar 

  3. Muszkat, K.A., Top. Curr. Chem., 1980, vol. 88, p. 89.

    Article  CAS  Google Scholar 

  4. Mazzucato, U., Pure Appl. Chem., 1982, vol. 54, p. 1705.

    Article  CAS  Google Scholar 

  5. Saltiel, J., Tarkalanov, N., and Sears, D.F., Jr., J. Am. Chem. Soc., 1995, vol. 117, p. 5586.

    Article  CAS  Google Scholar 

  6. Galiazzo, G., Bortolus, P., and Gennari, G., Gazz. Chim. Ital., 1990, vol. 120, p. 581.

    CAS  Google Scholar 

  7. Budyka, M.F., Potashova, N.I., Biktimirova, N.V., and Gavrishova, T.N., Khim. Vys. Energ., 2008, vol. 42, p.257 [High Energy Chem., 2008, vol. 42, p. 220].

    Google Scholar 

  8. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee, V.M., Khim. Vys. Energ., 2008, vol. 42, p.497 [High Energy Chem., 2008, vol. 42, p. 446].

    Google Scholar 

  9. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee, V.M., Khim. Vys. Energ., 2009, vol. 43, p. 424 [High Energy Chem., 2009, vol. 43, no. 5, p. 370].

    Google Scholar 

  10. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee, V.M., J. Photochem. Photobiol., A, 2009, vol. 203, p. 100.

    Article  CAS  Google Scholar 

  11. Arai, T. and Tokumaru, K., Chem. Rev., 1993, vol. 93, p. 23.

    Article  CAS  Google Scholar 

  12. Bartocci, G., Mazzucato, U., and Spalletti, A., Trends Phys. Chem., 2007, vol. 12, p. 1.

    CAS  Google Scholar 

  13. Budyka, M.F., Razumov, V.F., and Laukhina, O.D., Chem. Phys. Lett., 1997, vol. 279, p. 327.

    Article  CAS  Google Scholar 

  14. Kazakov, S.P., Razumov, V.F., and Alfimov, M.V., Khim. Vys. Energ., 2004, vol. 38, p. 249 [High Energy Chem., 2004, vol. 38, p. 249].

    CAS  Google Scholar 

  15. Bortolus, P., Galiazzo, G., Gennari, G., Manet, I., Marconi, G., and Monti, S., Photochem. Photobiol. Sci., 2004, vol. 3, p. 689.

    Article  CAS  Google Scholar 

  16. Budyka, M.F. and Oshkin, I.V., Khim. Vys. Energ., 2007, vol. 41, p. 503 [High Energy Chem., 2007, vol. 41, p. 444].

    Google Scholar 

  17. Budyka, M.F. and Oshkin, I.V., Khim. Vys. Energ., 2009, vol. 43, p. 431 [High Energy Chem., 2009, vol. 43, p. 377].

    Google Scholar 

  18. Budyka, M.F. and Oshkin, I.V., Int. J. Quantum Chem., 2010, vol. 110.

  19. MOPAC2009, James J. P. Stewart, Stewart Computational Chemistry, Version 8.303W, web: http://Open-MOPAC.net.

  20. http://openmopac.net/manual/Geometry-considerations.html.

  21. Quenneville, J. and Martinez, T.J., J. Phys. Chem. A, 2003, vol. 107, p. 829.

    Article  CAS  Google Scholar 

  22. Waldeck, D.H., Chem. Rev., 1991, vol. 91, p. 415.

    Article  CAS  Google Scholar 

  23. Sension, R.J., Repinec, S.T., Szarka, A.Z., and Hochstrasser, R.M., J. Chem. Phys., 1993, vol. 98, p. 6291.

    Article  CAS  Google Scholar 

  24. Gagliardi, L., Orlandi, G., Molina, V., Malmqvist, P., and Roos, B., J. Phys. Chem. A, 2002, vol. 106, p. 7355.

    Article  CAS  Google Scholar 

  25. Orlandi, G., Palmieri, P., and Poggi, G., J. Am. Chem. Soc., 1979, vol. 101, p. 3492.

    Article  CAS  Google Scholar 

  26. Molina, V., Merchan, M., and Roos, B.O., J. Phys. Chem. A, 1997, vol. 101, p. 3478.

    Article  CAS  Google Scholar 

  27. Levine, B.G. and Martinez, T.J., Ann. Rev. Phys. Chem., 2007, vol. 58, p. 613.

    Article  CAS  Google Scholar 

  28. Fuss, W., Kosmidis, C., Schmid, W.E., and Trushin, S.A., Chem. Phys. Lett., 2004, vol. 385, p. 423.

    Article  CAS  Google Scholar 

  29. Liu, R.S.H., Acc. Chem. Res., 2001, vol. 34, p. 555.

    Article  CAS  Google Scholar 

  30. Ruiz, D.S., Cembran, A., Garavelli, M., Olivucci, M., and Fuss, W., Photochem. Photobiol., 2002, vol. 76, p. 622.

    Article  CAS  Google Scholar 

  31. Fuss, W., Kosmidis, C., Schmid, W.E., and Trushin, S.A., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 4178.

    Article  CAS  Google Scholar 

  32. Amatatsu, Y., Chem. Phys. Lett., 1999, vol. 314, p. 364.

    Article  CAS  Google Scholar 

  33. Dou, Y. and Allen, R.E., Chem. Phys. Lett., 2003, vol. 378, p. 323.

    Article  CAS  Google Scholar 

  34. Bearpark, M.J., Bernardi, F., Clifford, S., Olivucci, M., Robb, M.A., and Vreven, T., J. Phys. Chem. A, 1997, vol. 101, p. 3841.

    Article  CAS  Google Scholar 

  35. Fuss, W., Lochbrunner, S., Muller, A.M., Schikarski, T., Schmid, W.E., and Trushin, S.A., Chem. Phys., 1998, vol. 232, p. 161.

    Article  CAS  Google Scholar 

  36. Garavelli, M., Page, C.S., Celani, P., Olivucci, M., Schmid, W.E., Trushin, S.A., and Fuss, W., J. Phys. Chem. A, 2001, vol. 105, p. 4458.

    Article  CAS  Google Scholar 

  37. Jiang, C.W., Xie, R.H., Li, F.L., and Allen, R.E., Chem. Phys. Lett., 2010, vol. 487, p. 177.

    Article  CAS  Google Scholar 

  38. Irie, M. and Uchida, K., Bull. Chem. Soc. Jpn., 1998, vol. 71, p. 985.

    Article  CAS  Google Scholar 

  39. Ern, J., Bens, A.T., Martin, H.-D., Kuldova, K., Trommsdorff, H.P., and Kryschi, C., J. Phys. Chem. A, 2002, vol. 106, p. 1654.

    Article  CAS  Google Scholar 

  40. Fedorova, O.A., Fedorov, Y.V., Andryukhina, E.N., Gromov, S.P., Alfimov, M.V., and Lapouyade, R., Org. Lett., 2003, vol. 5, p. 4533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Budyka.

Additional information

Original Russian Text © I.V. Oshkin, M.F. Budyka, 2010, published in Khimiya Vysokikh Energii, 2010, Vol. 44, No. 6, pp. 506–515.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshkin, I.V., Budyka, M.F. Quantum-chemical study of the photoisomerization and photocyclization reactions of styrylquinolines: Potential energy surfaces. High Energy Chem 44, 472–481 (2010). https://doi.org/10.1134/S0018143910060044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143910060044

Keywords

Navigation