Skip to main content
Log in

Principal physicochemical parameters of natural mineral-forming fluids

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The authors’ database (which includes data from more than 17500 publications on fluid and melt inclusions in minerals) was used to generalize information on the principal physicochemical parameters of natural mineral-forming fluids (temperature, pressure, density, salinity of aqueous solutions, and the gas composition of the fluids). For 21 minerals, data are reported on the frequency of occurrence of the homogenization temperatures of fluid inclusions in various temperature ranges, which make it possible to reveal temperature ranges most favorable for the crystallization of these minerals. Data on 5260 determinations were used to evaluate the frequency of occurrence of certain temperature and pressure ranges of natural fluids within the temperature intervals of 20–1200°C and 1–12000 bar. Within these intervals, frequencies of occurrence were evaluated for water-dominated and water-poor or water-free fluid inclusions in minerals. The former are predominant at temperatures below 600°C and pressures below 4000 bar, whereas the latter dominate at temperatures of 600–1200°C and pressures of 4000-12000 bar. Illustrative examples are presented for visually discernible magmatic water that exists as an individual high-density phase in melt inclusions in minerals from various rocks sampled worldwide (in the Caucasus, Italy, Slovakia, United States, Uzbekistan, New Zealand, Chile, and others). Attention is drawn to the fact that extensive data testify to fairly high (>1000–1500 bar) pressures during hydrothermal mineral-forming processes. These pressures are much higher not only than the hydrostatic but also the lithostatic pressures of the overlying rocks. Data on more than 18000 determinations are used to evaluate the frequency of occurrence of certain temperature and salinity ranges of mineral-forming fluids within the intervals of 20–1000°C and 0–80 wt % equiv. NaCl and certain temperature and density ranges of these fluids at 20–1000°C and 0.01–1.90 g/cm3. Information is presented on the gas analysis methods most commonly applied to natural fluids in studying fluid inclusions in minerals in 1965–2007. The average composition of the gaseous phase of natural inclusions is calculated based on more than 3000 Raman spectroscopic analyses (the most frequently used method for analyzing individual inclusions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. P. Ermakov, Studies of Mineral-Forming Solutions (Khark. Univ., Kharkov, 1950) [in Russian].

    Google Scholar 

  2. G. G. Lemmlein, “Healing of Cracks in Crystal and Changes in the Cavity Shapes of Secondary Liquid Inclusions,” Dokl. Akad. Nauk SSSR 78(4), 685–688 (1951).

    Google Scholar 

  3. G. G. Lemmlein, Morphology and Genesis of Crystals (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  4. E. Roedder, “Technique for the Extraction and Partial Chemical Analysis of Fluid-Field Inclusions from Minerals,” Econ. Geol. 53(3), 235–269 (1958).

    Article  Google Scholar 

  5. E. Roedder, “Fluid Inclusions,” Rev. Mineral. 12, 644 (1984).

    Google Scholar 

  6. V. A. Kalyuzhnyi, “Improvement of Microstage for Analysis of Liquid Inclusions,” Tr. VNIIP 2(2), 43–47 (1958).

    Google Scholar 

  7. V. A. Kalyuzhnyi, Principles of Study of Mineral-Forming Fluids (Naukova dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  8. Yu. A. Dolgov, “Thermodynamics of the Genesis of Miarolitic Pegmatites,” Tr. Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR 15, 113–165 (1963).

    Google Scholar 

  9. Yu. A. Dolgov, A. A. Tomilenko, and V. P. Chupin, “Inclusions of Salt Melt-Brines in Quartz of Anatectites from the Western Part of the Aldan Shield,” in Studying Inclusions in Minerals and Genetic Mineralogy (Novosibirsk, 1975), pp. 5–16 [in Russian].

  10. B. Poty, “Inclusions Solides Et “Fil a Plomb Mineralogique”: L’Age Du Filon De La Gardette (Isere),” Sciences de la Terre 11(1), 41–53 (1966).

    Google Scholar 

  11. B. P. Poty, H. A. Stalder, and A. M. Weisbroad, “Fluid Inclusions Studies in Quartz from Fissures of Western and Central Alps,” Schweiz. Min. Petr. Mitt 54(2/3), 717–752 (1974).

    Google Scholar 

  12. R. Clocchiatti, “Divers Aspects des Reliquats Magmatiques des Phenocristaux de Quartz des Porphyries de la Region de Bolzano (Italie),” C. R. Acad. Sci. 265(25), 1861–1863 (1967).

    Google Scholar 

  13. R. Clocchiatti, “Les Cristaux de Quartz des Ponces de la Vallee des dix Mille Fumees (Katmai, Alaska),” C. R. Acad. Sci. 274(23), 3037–3040 (1972).

    Google Scholar 

  14. R. J. Bodnar, “A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids,” Econ. Geol. 78(3), 535–542 (1983).

    Article  Google Scholar 

  15. R. J. Bodnar and S. M. Sterner, “Synthetic Fluid Inclusions in Natural Quartz. II. Application to PVT Studies,” Geochim. Cosmochim. Acta 49(9), 1855–1859 (1985).

    Article  Google Scholar 

  16. A. V. Sobolev and V. B. Naumov, “First Direct Evidence for the Presence of H2O in Ultrabasic Melt and Estimation of its Concentration,” Dokl. Akad. Nauk SSSR 280(2), 458–461 (1985).

    Google Scholar 

  17. A. V. Sobolev, “Melt Inclusions in Minerals as a Source of Principle Petrological Information,” Petrologiya 4(3), 228–239 (1996) [Petrology 4, 209–220 (1996)].

    Google Scholar 

  18. V. B. Naumov and G. B. Naumov, “Mineral-Forming Fluids and Physicochemical Trends of Their Evolution,” Geokhimiya, No. 10, 1450–1460 (1980).

  19. L. Bailly, V. Bouchot, C. Beny, and J.-P. Milesi, “Fluid Inclusion Study of Stibnite Using Infrared Microscopy: An Example from the Brouzils Antimony Deposit (Vendee, Armorican Massif, France),” Econ. Geol. 95(1), 221–226 (2000).

    Google Scholar 

  20. S. G. Hageman and V. Lüders, “P-T-X Conditions of Hydrothermal Fluids and Precipitation Mechanism of Stibnite-Gold Mineralization at the Wiluna Lode-Gold Deposits, Western Australia: Conventional and Infrared Microthermometric Constraints,” Miner. Deposita 38(8), 936–952 (2003).

    Article  Google Scholar 

  21. K. Germann, V. Lüders, D. A. Banks, et al., “Late Hercynian Polymetalic Vein-Type Base-Metal Mineralization in the Iberian Pyrite Belt: Fluid-Inclusion and Stable-Isotope Geochemistry (S-O-H-Cl),” Miner. Deposita 38(8), 953–967 (2003).

    Article  Google Scholar 

  22. A. R. Campbell and S. Robinson-Cook, “Infrared Fluid Inclusion Microthermometry on Coexisting Wolframite and Quartz,” Econ. Geol. 82(6), 1640–1645 (1987).

    Article  Google Scholar 

  23. A. R. Campbell, S. Robinson-Cook, and C. Amindyas, “Observation of Fluid Inclusions in Wolframite from Panasqueira, Portugal,” Bull. Mineral. 111(3–4), 251–256 (1988).

    Google Scholar 

  24. V. Lüders, “Contribution of Infrared Microscopy to Fluid Inclusions Studies in Some Opaque Minerals (Wolframite, Stibnite, Bournonite): Metallogenic Implications,” Econ. Geol. 91, 1462–1468 (1996).

    Article  Google Scholar 

  25. L. Bailly, L. Grancea, and K. Kouzmanov, “Infrared Microthermometry and Chemistry of Wolframite from the Baia Sprie Epithermal Deposit, Romania,” Econ. Geol. 97(2), 415–423 (2002).

    Article  Google Scholar 

  26. V. Lüders, J. Gutzmer, and N. J. Beukes, “Fluid Inclusion Studies in Cogenetic Hematite, Hausmannite, and Gangue Minerals from High-Grade Manganese Ores in the Kalahari Manganese Field, South Africa,” Econ. Geol. 94(4), 589–596 (1999).

    Article  Google Scholar 

  27. V. Lüders, R. L. Romer, A. R. Cabral, et al., “Genesis of Itabirite-Hosted Au-Pd-Pt-Bearing Hematite-(Quartz) Veins, Quadrilatero Ferrifero, Minas Gerais, Brazil: Constraints from Fluid Inclusion Infrared Microthermometry, Bulk Crush-Leach Analysis and U-Pb Systematics,” Miner. Deposita 40(3), 289–306 (2005).

    Article  Google Scholar 

  28. D. P. Mancano and A. R. Campbell, “Microthermometry of Enargite-Hosted Fluid Inclusions from the Lepanto, Philippines, High-Sulfidation Cu-Au Deposit,” Geochim. Cosmochim. Acta 59(19), 3909–3916 (1995).

    Article  Google Scholar 

  29. V. Lüders and M. Ziemann, “Possibilities and Limits of Infrared Light Microthermometry Applied to Studies of Pyrite-Hosted Fluid Inclusions,” Chem. Geol. 154(1–4), 169–178 (1999).

    Article  Google Scholar 

  30. K. Kouzmanov, L. Baily, C. Ramboz, et al., “Morphology, Origin and Infrared Microthermometry of Fluid Inclusions in Pyrite from the Radka Epithermal Copper Deposit, Srednogorie Zone, Bulgaria,” Miner. Deposita 37(6–7), 599–613 (2002).

    Article  Google Scholar 

  31. S. E. Lindaas, J. Kulis, and A. R. Campbell, “Near-Infrared Observation and Microthermometry of Pyrite-Hosted Fluid Inclusions,” Econ. Geol. 97(3), 603–618 (2002).

    Article  Google Scholar 

  32. V. Lüders, B. Pracejus, and P. Halbach, “Fluid Inclusion and Sulfur Isotope Studies in Probable Modern Analogue Kuroko-Type Ores from the JADE Hydrothermal Field (Central Okinawa Trough, Japan),” Chem. Geol. 173(1–3), 45–58 (2001).

    Article  Google Scholar 

  33. V. B. Naumov and V. S. Kamenetskii, “Silicate and Salt Melts in the Genesis of the Industrial’noe Tin Deposit: Evidence from Inclusions in Minerals,” Geokhimiya, No. 12, 1279–1289 (2006) [Geochem. Int. 44, 1181–1190 (2006)].

  34. V. S. Kamenetsky, V. B. Naumov, P. Davidson, et al., “Immiscibility between Silicate Magmas and Aqueous Fluids: a Melt Inclusion Pursuit Into the Magmatic-Hydrothermal Transition in the Omsukchan Granite (NE Russia),” Chem. Geol. 210(3–4), 73–90 (2004).

    Article  Google Scholar 

  35. V. B. Naumov and V. V. Shapenko, “Fluid Inclusion Data on Iron Content in the High-Temperature Chloride Solutions,” Geokhimiya, No. 2, 231–238 (1980).

  36. V. B. Naumov and N. E. Uchameishvili, “Thermometric Study of Inclusions in Minerals of Magmatic Rocks of the Tyrnauz Area (Nprth Caucasus),” Geokhimiya, No. 4, 525–532 (1977).

  37. G. A. Milovskii, B. F. Zlenko, and A. M. Gubanov, “Formation Conditions of the Scheelite Ores of the Deposit of the Chorukh-Dairon Ore Field: Evidence from the Study of Gas-Liquid Inclusions,” Geokhimiya, No. 1, 79–86 (1978).

  38. V. B. Naumov, A. Kh. Khakimov, and I. L. Khodakovskii, “Solubility of Hydrocarbonic Acid in the Concentrated Solutions at High Temperatures and Pressures,” Geokhimiya, No. 1, 45–55 (1974).

  39. A. I. Tugarinov and V. B. Naumov, “Physicochemical Parameters of Hydrothermal Mineral Formation,” Geokhimiya, No. 3, 259–265 (1972).

  40. G. B. Naumov and V. B. Naumov, “Influence of Temperature and Pressure on Acidity of Endogenic Solutions and Staging of Ore Formation,” Geol. Rudn. Mestorozhd., No. 1, 13–23 (1977).

  41. V. B. Naumov and G. B. Naumov, “Mineral-Forming Fluids and Physicochemical Trends of Their Evolution,” Geokhimiya, No. 10, 1450–1460 (1980).

  42. I. P. Solovova, V. B. Naumov, V. I. Kovalenko, et al., “History of the Formation of Spinel Lherzolite (Dreiser Weiher, W. Germany) on the Basis of Microinclusion Data,” Geokhimiya, No. 10, 1400–1411 (1990).

  43. V. B. Naumov and V. I. Kovalenko, “Characteristics of Major Volatiles of Natural Magmas and Metamorphic Fluids: Evidence from Fluid Inclusion Study,” Geokhimiya, No. 5, 590–600 (1986).

  44. N. V. Berdnikov and V. S. Prikhod’ko, “Hydrocarbonic Degassing of Alkali Basaltic Magmas,” Dokl. Akad. Nauk SSSR 259(3), 708–710 (1981).

    Google Scholar 

  45. T. Andersen, S. Y. O’Reilly, and W. L. Griffin, “The Trapped Fluid Phase in Upper Mantle Xenoliths from Victoria, Australia: Implications for Mantle Metasomatism,” Contrib. Mineral. Petrol. 88, 72–85 (1984).

    Article  Google Scholar 

  46. R. G. Schwab and B. Freisleben, “Fluid CO2 Inclusions in Olivine and Pyroxene and Their Behaviour under High Pressure and Temperature Conditions,” Bull. Mineral. 111(3–4), 297–306 (1988).

    Google Scholar 

  47. B. De Vivo, M. L. Frezzotti, A. Lima, and R. Trigila, “Spinel Lherzolite Nodules from Oahu Island (Hawaii): A Fluid Inclusion Study,” Bull. Mineral 111(3–4), 307–319 (1988).

    Google Scholar 

  48. T. Andersen, H. Austrheim, and E. A. J. Burke, “Fluid Inclusions in Granulites and Eclogites from the Bergen Arcs, Caledonides of W. Norway,” Mineral. Mag. 54, 145–158 (1990).

    Article  Google Scholar 

  49. B. De Vivo, A. Lima, and V. Scribano, “CO2 Fluid Inclusions in Ultramafic Xenoliths from the Iblean Plateau, Sicily, Italy,” Mineral. Mag. 54(375), 183–194 (1990).

    Article  Google Scholar 

  50. T. H. Hansteen, T. Andersen, E.-R. Neumann, and H. Jelsma, “Fluid and Silicate Glass Inclusions in Ultramafic and Mafic Xenoliths from Hierro, Canary Islands: Implications for Mantle Metasomatism,” Contrib. Mineral. Petrol. 107, 242–254 (1991).

    Article  Google Scholar 

  51. N. L. Dobretsov, I. V. Ashchepkov, V. A. Simonov, and S. M. Zhmodik, “Interaction of Upper Mantle Rocks with Deep-Seated Fluids and Melts of the Baikal Rift Zone,” Geol. Geofiz., No. 5, 3–20 (1992).

  52. M. L. Frezzotti, E. A. J. Burke, B. De Vivo, et al., “Mantle Fluids in Pyroxenite Nodules from Salt Lake Crater (Oahu, Hawaii),” Eur. J. Mineral. 4(5), 1137–1153 (1992).

    Google Scholar 

  53. P. Schiano and R. Clocchiatti, “Worldwide Occurrence of Silica-Rich Melts in Sub-Continental and Sub-Oceanic Mantle Minerals,” Nature 368, 621–624 (1994).

    Article  Google Scholar 

  54. P. Schiano, R. Clocchiatti, N. Shimizu, et al., “Cogenetic Silica-Rich and Carbonate-Rich Melts Trapped in Mantle Minerals in Kerguelen Ultramafic Xenoliths: Implications for Metasomatism in the Oceanic Upper Mantle,” Earth Planet. Sci. Lett. 123, 167–178 (1994).

    Article  Google Scholar 

  55. M. E. Varela, E. A. Bjerg, R. Clocchiatti, et al., “Fluid Inclusions in Upper Mantle Xenoliths from Northern Patagonia, Argentina: Evidence for an Upper Mantle Diapir,” Mineral. Petrol. 60, 145–164.

  56. T. H. Hansteen, A. Klugel, and H.-U. Schmincke, “Multi-Stage Magma Ascent beneath the Canary Islands: Evidence from Fluid Inclusions,” Contrib. Mineral. Petrol. 132, 48–64 (1998).

    Article  Google Scholar 

  57. A. V. Golovin, V. V. Sharygin, and V. G. Mal’kovets, “Melt Evolution during the Crystallization of the Bele Basanite Pipe (North Minusinks Depression),” Geol. Geofiz. 41(12), 1760–1782 (2000).

    Google Scholar 

  58. M. Santosh and T. Tsunogae, “Extremely High Density Pure CO2 Fluid Inclusions in a Garnet Granulite from Southern India,” J. Geol. 111, 1–16 (2003).

    Article  Google Scholar 

  59. M. Santosh, T. Tsunogae, and S.-I. Yoshikura, “’Ultrahigh Density’ Carbonic Fluids in Ultrahigh-Temperature Crustal Metamorphism,” J. Mineral. Petrol. Sci. 99 (2004).

  60. M. Cuney, Y. Coulibaly, and M.-C. Boiron, “High-Density Early CO2 Fluids in the Ultrahigh-Temperature Granulites of Ihouhaouene (In Ouzzal, Algeria),” Lithos 96(3–4), 402–414 (2007).

    Article  Google Scholar 

  61. V. B. Naumov and V. I. Kovalenko, “Water Content and Pressure in Felsic Magmas: Evidence from Fluid Inclusion Study,” Dokl. Akad. Nauk SSSR 261(6), 1417–1420 (1981).

    Google Scholar 

  62. I. T. Bakumenko and O. N. Kosukhin, “Water in Felsic Melt Inclusions,” Dokl. Akad. Nauk SSSR 234(1), 164–167 (1977).

    Google Scholar 

  63. V. B. Naumov, “Determination of Concentration and Pressure of Volatiles in Magmatic Melts Based on Inclusions in Minerals,” Geokhimiya, No. 7, 997–1007 (1979).

  64. V. B. Naumov, V. I. Kovalenko, R. Clocchiatti, and I. P. Solovova, “Crystallization Parameters and Phase Composition of Melt Inclusions in Quartz of Ongonites,” Geokhimiya, No. 4, 451–464 (1984).

  65. V. B. Naumov, I. P. Solovova, V. I. Kovalenko, and I. D. Ryabchikov, “Fluid Inclusion Data on Composition and Concentration of Fluid Phase and Water Content in the Pantellerite and Ongonite Melts,” Dokl. Akad. Nauk SSSR 295(2), 456–459 (1987).

    Google Scholar 

  66. V. B. Naumov, I. P. Solovova, V. A. Kovalenker, et al., “First Data on High-Density Fluid Inclusions of the Magamatic Water in the Rhyolite Phenocrysts,” Dokl. Akad. Nauk SSSR 318(1), 187–190 (1991).

    Google Scholar 

  67. G. M. Tsareva, V. I. Kovalenko, V. B. Naumov, et al., “Melt Inclusions in High-Density Aqueous Phase in Quartz of the Spor Mountain Rare-Metal Topaz Rhyolites (USA),” Dokl. Akad. Nauk SSSR 314(3), 694–697 (1990).

    Google Scholar 

  68. G. M. Tsareva, V. B. Naumov, V. I. Kovalenko, et al., “Melt Inclusion Data on the Composition and Crystallization Conditions of the Spor Mountain Topaz Rhyolites (USA),” Geokhimiya, No. 10, 1453–1462 (1991).

  69. V. B. Naumov, I. P. Solovova, V. A. Kovalenker, et al., “Magmatic Water at Pressures of 15–17 Kbar and Its Concentration in the Melt: First Inclusion Data on Plagioclase Andesites,” Dokl. Akad. Nauk SSSR 324(3), 654–658 (1992).

    Google Scholar 

  70. M. L. Frezzotti, “Magmatic Immiscibility and Fluid Phase Evolution in the Mount Genis Granite (Southeastern Sardinia, Italy),” Geochim. Cosmochim. Acta 56, 21–33 (1992).

    Article  Google Scholar 

  71. V. B. Naumov, V. A. Kovalenker, V. L. Rusinov, and N. N. Kononkova, “High-Density Fluid Inclusions of Magmatic Water in Phenocrysts of Acid Volcanics from the Western Carpathians and Middle Tien Shan,” Petrologiya 2(5), 480–494 (1994).

    Google Scholar 

  72. V. B. Naumov, M. L. Tolstykh, V. A. Kovalenker, and N. N. Kononkova, “Fluid Overpressure in Andesite Melts from Central Slovakia: Evidence from Inclusions in Minerals,” Petrologiya 4(3), 283–294 (1996) [Petrology 4, 265–276 (1996)].

    Google Scholar 

  73. P. Davidson and V. S. Kamenetsky, “Primary Aqueous Fluids in Rhyolitic Magmas: Melt Inclusion Evidence for Pre- and Post-Trapping Exsolution,” Chem. Geol. 237, 372–383 (2007).

    Article  Google Scholar 

  74. S. Wallier, R. Rey, K. Kouzmanov, et al., “Magmatic Fluids in the Breccia-Hosted Epithermal Au-Ag Deposit of Rosia Montana, Romania,” Econ. Geol. 101(5), 923–954 (2006).

    Article  Google Scholar 

  75. V. B. Naumov, V. I. Kovalenko, and V. A. Dorofeeva, “Magmatic Volatile Components and Their Role in the Formation of Ore-Forming Fluids,” Geol. Rudn. Mestorozhd. 39(6), 520–529 (1997) [Geol. Ore Dep. 39, 451–460 (1997)].

    Google Scholar 

  76. V. B. Naumov and G. F. Ivanova, “On Relation of Rare-Metal Mineralization with Felsic Magmatism: Evidence from the Study of Mineral Inclusions,” Geol. Rudn. Mestorozhd. 22(3), 95–103 (1980).

    Google Scholar 

  77. V. B. Naumov and G. F. Ivanova, “Geochemical Criteria of Genetic Relation of Rare-Metal Mineralization with Acid Magmatism,” Geokhimiya, No. 6, 791–804 (1984).

  78. I. P. Kushnarev, Depth of the Formation of Endogenic Ore Deposits (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  79. V. B. Naumov, Yu. G. Safonov, and O. F. Mironova, “Some Tendencies in Spatial Variations of the Fluid Parameters of the Kolar Gold-Bearing Deposit (India),” Geol. Rudn. Mestorozhd. 30(6), 105–109 (1988).

    Google Scholar 

  80. V. B. Naumov and G. F. Ivanova, “Barometrical Characterization of the Formation of Tungsten Deposits,” Geokhimiya, No. 6, 627–641 (1971).

  81. V. B. Naumov, G. F. Ivanova, and Z. M. Motorina, “Formation Conditions of Tungsten, Tin-Tungsten, and Molybdenum-Tungsten Deposits,” in Main Parameters of Natural Processes of Endogenic Ore Formation (Nauka, Novosibirsk, 1979), Vol. 2, pp. 53–62 [in Russian].

    Google Scholar 

  82. V. Yu. Prokof’ev, V. B. Naumov, G. F. Ivanova, and N. I. Savel’eva, “Study of Fluid Inclusions in the Cryolite and Siderite of the Ivigtut Deposit (Greenland),” Geokhimiya, No. 12, 1783–1788 (1990).

  83. V. Yu. Prokof’ev, V. B. Naumov, G. F. Ivanova, and N. I. Savel’eva, “Fluid Inclusion Studies in Cryolite and Siderite of the Ivigtut Deposit (Greenland),” Neues Jahrb. Mineral. Monatsh., No. 1, 32–38 (1991).

  84. V. B. Naumov and G. F. Ivanova, “P-T Conditions of Fluorite Crystallization at Tungsten Deposits,” Geokhimiya, No. 3, 387–400 (1975).

  85. E. I. Sergeeva, V. B. Naumov, and I. L. Khodakovskii, “Formation Conditions of Arsenic Sulfide at Hydrothermal Deposits,” in Geochemistry of Hydrothermal Ore Formation (Nauka, Moscow, 1971), pp. 210–222 [in Russian].

    Google Scholar 

  86. I. A. Baksheev, V. Yu. Prokof’ev, and V. I. Ustinov, “Genesis of Metasomatic Rocks and Mineralized Veins at the Berezovskoe Deposit, Central Urals: Evidence from Fluid Inclusions and Stable Isotopes,” Geochem. Int. 39(Suppl. 2), 129–144 (2001).

    Google Scholar 

  87. V. B. Naumov, V. S. Kamenetskii, R. Thomas, et al., “Inclusions of Silicate and Sulfate Melts in Chrome Diopside from the Inagli Deposit, Yakutia, Russia,” Geokhimiya, No. 6, 603–614 (2008) [Geochem. Int. 46 554–564 (2008)].

  88. V. V. Shapenko, “Genetic Features of Tungsten Mineralization of the Dzhida Ore Field (Southwestern Transbaikalia),” Geol. Rudn. Mestorozhd., No. 5, 18–29 (1982).

  89. V. B. Naumov and B. N. Naumenko, “Formation Conditions of the Svetloe Tin-Tungsten Deposit (Chukotka),” Geol. Rudn. Mestorozhd., No. 5, 84–92 (1979).

  90. G. F. Ivanova, V. B. Naumov, V. S. Karpukhina, and E. V. Cherkasova, “Genesis of Rare-Metal (W, Mo, Sn, and Be) Mineralization in Southeastern Mongolia: Geochemical Features and Physicochemical Parameters,” Geokhimiya, No. 8, 834–845 (2002) [Geochem. Int. 40, 751–761 (2002)].

  91. V. A. Kovalenker, V. B. Naumov, V. Yu. Prokof’ev, et al., “Compositions of Magmatic Melts and Evolution of Mineral-Forming Fluids in the Banska Stiavnica Epithermal Au-Ag-Pb-Zn Deposit, Slovakia: A Study of Inclusions in Minerals,” Geokhimiya, No. 2, 141–160 (2006) [Geochem. Int. 44, 118–136 (2006)].

  92. V. B. Naumov, “Possibility of Determination of Pressure and Density of Mineral-Forming Media Based on Mineral Inclusions,” in Studying Inclusions in Minerals in Application to the Exploration and Study of Ore Deposits (Nedra, Moscow, 1982), pp. 85–94 [in Russian].

    Google Scholar 

  93. R. C. Murray, “Hydrocarbon Fluid Inclusions in Quartz,” Am. Assoc. Petrol. Geol. Bull. 41(5), 950–952 (1957).

    Google Scholar 

  94. R. Goguel, “Die Chemische Zusammensetzung der in den Mineralen Einiger Granite und Ihrer Pegmatite ein Geschlossenen Gaz und Flussigkeiten,” Geochim. Cosmochim. Acta 27(2), 155–181 (1963).

    Article  Google Scholar 

  95. J.-L. Zimmermann, “Etude par Spectrometrie de Masse des Fluids Occlus dans Quelques Echantillons de Quartz,” C. R. Acad. Sci. 263(5), 461–464 (1966).

    Google Scholar 

  96. V. A. Kalyuzhnyi, I. M. Svoren’, and E. L. Platonova, “Composition of Gas-Fluid Inclusions and Problems of Hydrogen Discovery in Them: Results of Mass-Spectrometric Chemical Analysis,” Dokl. Akad. Nauk SSSR 219(4), 973–976 (1974).

    Google Scholar 

  97. I. Bonev and N. B. Piperov, “Precipitation of Ores, Boiling, and Vertical Interval of Lead-Zinc Mineralization in the Madan Ore Field,” Geologica Balcanica, Sofia 7(4) (1977).

  98. D. I. Norman and F. J. Sawkins, “The Tribag Breccia Pipes: Precambrian Cu-Mo Deposits, Batchawana Bay, Ontario,” Econ. Geol. 80(6), 1593–1621 (1985).

    Article  Google Scholar 

  99. J. N. Moore, D. I. Norman, and B. M. Kennedy, “Fluid Inclusion Gas Compositions from an Active Magmatic-Hydrothermal System: A Case Study of the Geysers Geothermal Field, USA,” Chem. Geol. 173(1–3), 3–30 (2001).

    Article  Google Scholar 

  100. F. Q. Yang, J. W. Mao, Y. T. Wang, et al., “Geology and Metalogenesis of the Sawayaerdunn Gold Deposit in the Southwestern Xinjiang, China,” Resour. Geol. 57(1), 57–75 (2007).

    Article  Google Scholar 

  101. M. M. Elinson, “Methods of Extraction and Study of Gas and Liquid from Mineral Inclusions,” in Mineralogical Thermometry and Barometry (Nauka, Moscow, 1968), pp. 23–31 [in Russian].

    Google Scholar 

  102. K. A. Kvenvolden and E. Roedder, “Fluid Inclusions in Quartz Crystals from South-West-Africa,” Geochim. Cosmochim. Acta 35, 1209–1229 (1971).

    Article  Google Scholar 

  103. O. F. Mironova, “Gas-Chromatographic Analysis of Inclusions in Minerals,” Zh. Analyt. Khim. 28(8), 1561–1564 (1973).

    Google Scholar 

  104. O. F. Mironova, V. B. Naumov, and A. N. Salazkin, “Nitrogen in Mineral-Forming Fluids. Gas-Chromatographic Determination during Studying Inclusions in Minerals,” Geokhimiya, No. 7, 979–992 (1992).

  105. C.-J. Bray and E. T. C. Spooner, “Fluid Inclusion Volatile Analysis by Gas Chromatography with Photoionization/Microthermal Conductivity Detectors: Applications to Magmatic MoS2 and Other H2O-CO2 and H2O-CH4 Fluids,” Geochim. Cosmochim. Acta 56, 261–272 (1992).

    Article  Google Scholar 

  106. T. Graupner, U. Kempe, E. T. C. Spooner, et al., “Microthermometric, Laser Raman Spectroscopic, and Volatile-Ion Chromatographic Analysis of Hydrothermal Fluids in the Paleozoic Muruntau Au-Bearing Quartz Vein Ore Field, Uzbekistan,” Econ. Geol. 96(1), 1–23 (2001).

    Article  Google Scholar 

  107. I. N. Maslova, “Ultramicrochemical Study of Composition of Liquid and Gas Phase in Two-Phase Inclusions from Quartz of Volhynia,” Geokhimiya, No. 2, 169–173 (1961).

  108. Yu. A. Dolgov and N. A. Shugurova, “Compositional Study of Individual Gas Inclusions,” in Materials on Genetic and Experimental Mineralogy (Nauka, Novosibirsk, 1966), Vol. 4, pp. 173–181 [in Russian].

    Google Scholar 

  109. G. J. Rosasco and E. Roedder, “Application of a New Laser-Excited Raman Spectrometer to Nondestructive Analysis of Sulfate in Individual Phases in Fluid Inclusions in Minerals,” in Proceedings of 25th International Geological Congress, Canberra, Australia, 1976 (Canberra, 1976), Vol. 3, pp. 812–813.

    Google Scholar 

  110. N. Guilhaumou, P. Dhamelincourt, J.-C. Touray, and J. Barbillat, “Analyse a la Microsonde a Effet Raman d’Inclusions Gazeuses du Systeme N2-CO2,” C. R. Acad. Sci. 287(15), 1317–1319 (1978).

    Google Scholar 

  111. P. Dhamelincourt, J-M. Beny, J. Dubessy, and B. Poty, “Analyse d’Inclusions Fluids a la Microsonde MOLE a Effet Raman,” Bull. Mineral. 102(5–6), 600–610 (1979).

    Google Scholar 

  112. V. B. Naumov, M. V. Akhmanova, A. V. Sobolev, and P. Dhamelincourt, “Application of Laser Raman-Microprobe in Study of Gas Phase of Inclusions in Minerals,” Geokhimiya, No. 7, 1027–1034 (1986).

  113. J. Konnerup-Madsen, J. Dubessy, and J. Rose-Hansen, “Combined Raman Microprobe Spectrometry and Microthermometry of Fluid Inclusions in Minerals from Igneous Rocks of the Gardar Province (South Greenland),” Lithos 18(4), 271–280 (1985).

    Article  Google Scholar 

  114. M. Nishizawa, Y. Sano, Y. Ueno, and S. Maruyama, “Speciation and Isotope Ratios of Nitrogen in Fluid Inclusions from Seafloor Deposits at ∼3.5 Ga,” Mar. Geol. 254(3–4), 332–344 (2007).

    Google Scholar 

  115. A. S. Borisenko, A. A. Borovikov, L. M. Zhitova, and G. G. Pavlova, “Composition of Magmatogenic Fluids and Factors of their Geochemical Specialization and Metal Potential,” Geol. Geofiz. 47(12), 1308–1325 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Naumov.

Additional information

Original Russian Text © V.B. Naumov, V.A. Dorofeeva, O.F. Mironova, 2009, published in Geokhimiya, 2009, No. 8, pp. 825–851.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, V.B., Dorofeeva, V.A. & Mironova, O.F. Principal physicochemical parameters of natural mineral-forming fluids. Geochem. Int. 47, 777–802 (2009). https://doi.org/10.1134/S0016702909080035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909080035

Keywords

Navigation