Skip to main content
Log in

Ultrastructural and Functional Changes in Liver Mitochondria in a Rat Model of Type I Diabetes Mellitus

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The characteristics of the ultrastructure and functioning of mitochondria in the liver of Sprague Dawley rats in the experimental model of type I diabetes mellitus have been investigated. It has been found that diabetes mellitus induced in response to streptozotocin administration at a dose of 75 mg/kg body weight was accompanied by disturbances in the structural organization of mitochondrial cristae and a decrease in the size of the organelles compared to the control. It has been also demonstrated that in type I diabetes the respiratory rates of liver mitochondria in metabolic states 2, 3, and 4 increase. This may be associated with an increase in the total content of fatty acids in liver mitochondria of diabetic rats. At the same time, streptozotocin-induced diabetes mellitus in rats did not affect the indices of oxidative phosphorylation efficiency (ADP/O, respiratory control ratio, and phosphorylation time) in liver mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. American Diabetes Association, in Diabetes Care (American Diabetes Association, 2011), pp. 62–69.

  2. L. C. Groop and J. G. Eriksson, Ann. Med. 24, 483 (1992).

    Article  Google Scholar 

  3. W. H. Gispen and G. J. Biessels, Trends Neurosci. 23, 542 (2000).

    Article  Google Scholar 

  4. D. M. D’Souza, D. Al-Sajee, and T. J. Hawke, Front. Physiol. 4, 379 (2013).

    Google Scholar 

  5. M. A. Liu, H. B. Cao, Y. A. Hou, et al., Cell Physiol. Biochem. 45 (4), 1423 (2018).

    Article  Google Scholar 

  6. D. E. Frances, M. T. Ronco, J. A. Monti, et al., J. Endocrinol. 205 (2), 187 (2010).

    Article  Google Scholar 

  7. F. M. Ferreira, C. M. Palmeira, R. Seica, et al., J. Biochem. Mol. Toxicol. 17 (4), 214 (2003).

    Article  Google Scholar 

  8. M. K. Montgomery and N. Turner, Endocr. Connect. 4 (1), R1 (2015).

    Article  Google Scholar 

  9. M. P. Murphy and R. A. Smith, Annu. Rev. Pharmacol. Toxicol. 47, 629 (2007).

    Article  Google Scholar 

  10. J. Chen, S. E. Stimpson, G. A. Fernandez-Bueno, et al., Antioxid. Redox Signal. 29 (14), 1361 (2018).

    Article  Google Scholar 

  11. K. Morino, K. F. Petersen, and G. I. Shulman, Diabetes 55 (2), S9 (2006).

    Article  Google Scholar 

  12. K. F. Petersen, D. Befroy, S. Dufour, et al., Science 300, 1140 (2003).

    Article  ADS  Google Scholar 

  13. F. Malka, O. Guillery, C. Cifuentes-Diaz, et al., EMBO Rep. 6, 853 (2005).

    Article  Google Scholar 

  14. H. Chen, A. Chomyn, and D. C. Chan, J. Biol. Chem. 280, 26185 (2005).

    Article  Google Scholar 

  15. H. Chen, M. Vermulst, Y. E. Wang, et al., Cell 141, 280 (2010).

    Article  Google Scholar 

  16. J. A. Baur, K. J. Pearson, N. L. Price, et al., Nature 444, 337 (2006).

    Article  ADS  Google Scholar 

  17. T. Nishikawa, D. Kukidome, K. Sonoda, et al., Diabetes Res. Clin. Pract. 77, 161 (2007).

    Article  Google Scholar 

  18. B. Rodrigues, P. Poucheret, M. L. Battell, et al., in Experimental Models of Diabetes, Ed by J. H. McNeill (Boca Raton, FL: CRC Press, 1999), pp 3–17.

    Google Scholar 

  19. K. N. Belosludtsev, N. V. Belosludtseva, A. V. Agafonov, et al., Biochim. Biophys. Acta 1838 (10), 2600 (2014).

    Article  Google Scholar 

  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., J. Biol.- Chem. 193 (1), 265 (1951).

    Google Scholar 

  21. N. I. Venediktova, O. S. Gorbacheva, N. V. Beloslud-tseva, et al., J. Bioenerg. Biomembr. 49 (2), 149 (2017).

    Article  Google Scholar 

  22. B. Chance and G. R. Williams, Nature 176 (4475), 250 (1955).

    Article  ADS  Google Scholar 

  23. E. Bligh and W. Dyer, Can. J. Biochem. Physiol. 37, 911 (1959).

    Article  Google Scholar 

  24. W. I. Sivitz and M. A. Yorek, Antioxid. Redox Signal. 12 (4), 537 (2010).

    Article  Google Scholar 

  25. M. Patti and S. Corvera, Endocr. Rev. 31 (3), 364 (2010).

    Article  Google Scholar 

  26. R. N. Remedioa, A. Castellar, R. A. Barbosa, et al., Micron 42 (5), 484 (2011).

    Article  Google Scholar 

  27. D. A. Hood, L. D. Tryon, H. N. Carter, et al., Biochem. J. 473, 2295 (2016).

    Article  Google Scholar 

  28. A. T. Erlich, L. D. Tryon, M. J. Crilly, et al., Integr. Med. Res. 5, 187 (2016).

    Article  Google Scholar 

  29. P. A. Parone, S. Da Cruz, D. Tondera, et al., PLoS One 3, 3257 (2008).

    Article  ADS  Google Scholar 

  30. R. S. Kaplan, D. L. Oliveira, and G. L. Wilson, Arch. Biochem Biophys. 280 (1), 181 (1990).

    Article  Google Scholar 

  31. V. N. Samartsev, Biochemistry (Moscow) 65 (9), 991 (2000).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-015-00117-а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Starinets.

Ethics declarations

The study was performed in accordance with the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes (Strasbourg, 1986) and the ethical principles of the Declaration of Helsinki (2000). All the experimental protocols were approved by the Ethics Committee of the Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences (order no. 173 / from October 3, 2011, protocol no. 04/2019 from March 5, 2019).

Additional information

Translated by I. Matiulko

Abbreviations: DNP, 2,4-dinitrophenol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starinets, V.S., Lebedeva, E.V., Mikheeva, I.B. et al. Ultrastructural and Functional Changes in Liver Mitochondria in a Rat Model of Type I Diabetes Mellitus. BIOPHYSICS 64, 755–760 (2019). https://doi.org/10.1134/S0006350919050221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919050221

Navigation