Skip to main content
Log in

Biosynthetic Protein Folding and Molecular Chaperons

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Perrin, D. (1963) Complementation between products of the β-galactosidase structural gene of Escherichia coli, Cold Spring Harb. Symp. Quant. Biol., 28, 529-532, https://doi.org/10.1101/SQB.1963.028.01.070.

    Article  CAS  Google Scholar 

  2. Fogel, Z., and Elson, D. (1964) The ribosomal beta-galactosidase of Escherichia coli, Biochim. Biophys. Acta, 80, 601-613, https://doi.org/10.1016/0926-6550(64)90305-6.

    Article  CAS  PubMed  Google Scholar 

  3. Kiho, Y., and Rich, A. (1964) Induced enzyme formed on bacterial polyribosomes, Proc. Natl. Acad. Sci. USA, 51, 111-118.

    Article  CAS  Google Scholar 

  4. Lederberg, E. M., Cavalli-Sforza, L., and Lederberg, J. (1964) Interaction of streptomycin and a suppressor for galactose fermentation in E. coli K-12, Proc. Natl. Acad. Sci. USA, 51, 678-682, https://doi.org/10.1073/pnas.51.4.678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baldwin, R. L. (1975) Intermediates in protein folding reactions and the mechanism of protein folding, Ann. Rev. Biochem., 44, 453-475, https://doi.org/10.1146/annurev.bi.44.070175.002321.

    Article  CAS  PubMed  Google Scholar 

  6. Lim, V. I., and Spirin, A. S. (1986) Stereochemical analysis of ribosomal transpeptidation conformation of nascent peptide, J. Mol. Biol., 188, 565-574, https://doi.org/10.1016/S0022-2836(86)80006-7.

    Article  CAS  PubMed  Google Scholar 

  7. Jenner, L., Melnikov, S., de Loubresse, N. G., Ben-Shem, A., Iskakova, M., et al. (2012) Crystal structure of the 80S yeast ribosome, Curr. Opin. Struct. Biol., 22, 759-767, https://doi.org/10.1016/j.sbi.2012.07.013.

    Article  CAS  PubMed  Google Scholar 

  8. Lu, J., and Deutsch, C. (2005) Folding zones inside the ribosomal exit tunnel, Nat. Struct. Mol. Biol., 12, 1123-1129, https://doi.org/10.1038/nsmb1021.

    Article  CAS  PubMed  Google Scholar 

  9. Ziv, G., Haran, G., and Thirumalai, D. (2005) Ribosome exit tunnel can entropically stabilize α-helices, Proc. Natl. Acad. Sci. USA, 102, 18956-18961, https://doi.org/10.1073/pnas.0508234102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holtkamp, W., Kokic, G., Jäger, M., Mittelstaet, J., Komar, A. A., et al. (2015) Cotranslational protein folding on the ribosome monitored in real time, Science, 350, 1104-1107, https://doi.org/10.1126/science.aad0344.

    Article  CAS  PubMed  Google Scholar 

  11. Wruck, F., Katranidis, A., Nierhaus, K. H., Büldt, G., and Hegner, M. (2017) Translation and folding of single proteins in real time, Proc. Natl. Acad. Sci. USA, 114, E4399-E4407, https://doi.org/10.1073/pnas.1617873114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haase, N., Holtkamp, W., Lipowsky, R., Rodnina, M., and Rudorf, S. (2018) Decomposition of time-dependent fluorescence signals reveals codon-specific kinetics of protein synthesis, Nucleic Acids Res., 46, 12186-12187, https://doi.org/10.1093/nar/gky740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cassaignau, A. M. E., Launay, H. M. M., Karyadi, M.-E., Wang, X., Waudby, C. A., et al. (2016) A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy, Nat. Protoc., 11, 1492-1507, https://doi.org/10.1038/nprot.2016.101.

    Article  PubMed  Google Scholar 

  14. Waudby, C. A., Wlodarski, T., Karyadi, M.-E., Cassaignau, A. M. E., Chan, S. H. S., et al. (2018) Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis, Proc. Natl. Acad. Sci. USA, 115, 9744-9749, https://doi.org/10.1073/pnas.1716252115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cabrita, L. D., Cassaignau, A. M. E., Launay, H. M. M., Waudby, C. A., Wlodarski, T., et al. (2016) A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding, Nat. Struct. Mol. Biol., 23, 278-285, https://doi.org/10.1038/nsmb.3182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoffmann, A., Becker, A. H., Zachmann-Brand, B., Deuerling, E., Bukau, B., et al. (2012) Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding, Mol. Cell, 48, 63-74, https://doi.org/10.1016/j.molcel.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  17. Nilsson, O. B., Nickson, A. A., Hollins, J. J., Wickles, S., Steward, A., et al. (2017) Cotranslational folding of spectrin domains via partially structured states, Nat. Struct. Mol. Biol., 24, 221-225, https://doi.org/10.1038/nsmb.3355.

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson, O. B., Hedman, R., Marino, J., Wickles, S., Bischoff, L., et al. (2015) Cotranslational protein folding inside the ribosome exit tunnel, Cell Rep., 12, 1533-1540, https://doi.org/10.1016/j.celrep.2015.07.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Samelson, A. J., Bolin, E., Costello, S. M., Sharma, A. K., O’Brien, E. P., et al. (2018) Kinetic and structural comparison of a protein’s cotranslational folding and refolding pathways, Sci. Adv., 4, eaas9098, https://doi.org/10.1126/sciadv.aas9098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samelson, A. J., Jensen, M. K., Soto, R. A., Cate, J. H. D., and Marqusee, S. (2016) Quantitative determination of ribosome nascent chain stability, Proc. Natl. Acad. Sci. USA, 113, 13402-13407, https://doi.org/10.1073/pnas.1610272113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, G., Hubalewska, M., and Ignatova, Z. (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding, Nat. Struct. Mol. Biol., 16, 274-280, https://doi.org/10.1038/nsmb.1554.

    Article  CAS  PubMed  Google Scholar 

  22. Deeng, J., Chan, K. Y., van der Sluis, E. O., Berninghausen, O., Han, W., et al. (2016) Dynamic behavior of trigger factor on the ribosome, J. Mol. Biol., 428, 3588-3602, https://doi.org/10.1016/j.jmb.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  23. Goldman, D. H., Kaiser, C. M., Milin, A., Righini, M., Tinoco, I., et al. (2015) Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo, Science, 348, 457-460, https://doi.org/10.1126/science.1261909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaiser, C. M., Goldman, D. H., Chodera, J. D., Tinoco, I., and Bustamante, C. (2011) The ribosome modulates nascent protein folding, Science, 334, 1723-1727, https://doi.org/10.1126/science.1209740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, K., Maciuba, K., and Kaiser, C. M. (2019) The ribosome cooperates with a chaperone to guide multi-domain protein folding, Mol. Cell, 74, 310-319.e7, https://doi.org/10.1016/j.molcel.2019.01.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian, P., Steward, A., Kudva, R., Su, T., Shilling, P. J., Nickson, A. A., et al. (2018) Folding pathway of an Ig domain is conserved on and off the ribosome, Proc. Natl. Acad. Sci. USA, 115, E11284-E11293, https://doi.org/10.1073/pnas.1810523115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhushan, S., Gartmann, M., Halic, M., Armache, J.-P., Jarasch, A., et al. (2010) alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel, Nat. Struct. Mol. Biol., 17, 313-317, https://doi.org/10.1038/nsmb.1756.

    Article  CAS  PubMed  Google Scholar 

  28. Farías-Rico, J. A., Selin, F. R., Myronidi, I., Frühauf, M., and von Heijne, G. (2018) Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome, Proc. Natl. Acad. Sci. USA, 115, E9280-E9287, https://doi.org/10.1073/pnas.1812756115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kudva, R., Tian, P., Pardo-Avila, F., Carroni, M., Best, R. B., et al. (2018) The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding, ELife, 7, e36326, https://doi.org/10.7554/eLife.36326.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou, H. X., and Dill, K. A. (2001) Stabilization of proteins in confined spaces, Biochemistry, 40, 11289-11293, https://doi.org/10.1021/bi0155504.

    Article  CAS  PubMed  Google Scholar 

  31. Deckert, A., Waudby, C. A., Wlodarski, T., Wentink, A. S., Wang, X., et al. (2016) Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor, Proc. Natl. Acad. Sci. USA, 113, 5012-5017, https://doi.org/10.1073/pnas.1519124113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Voss, N. R., Gerstein, M., Steitz, T. A., and Moore, P. B. (2006) The geometry of the ribosomal polypeptide exit tunnel, J. Mol. Biol., 360, 893-906, https://doi.org/10.1016/j.jmb.2006.05.023.

    Article  CAS  PubMed  Google Scholar 

  33. Kudlicki, W., Coffman, A., Kramer, G., and Hardesty, B. (1997) Ribosomes and ribosomal RNA as chaperones for folding of proteins, Folding Design, 2, 101-108, https://doi.org/10.1016/S1359-0278(97)00014-X.

    Article  CAS  PubMed  Google Scholar 

  34. Kramer, G., Ramachandiran, V., and Hardesty, B. (2001) Cotranslational folding – omnia mea mecum porto? Int. J. Biochem. Cell Biol., 33, 541-553, https://doi.org/10.1016/S1357-2725(01)00044-9.

    Article  CAS  PubMed  Google Scholar 

  35. Kramer, G., Kudlicki, W., McCarthy, D., Tsalkova, T., Simmons, D., et al. (1999) N-terminal and C-terminal modifications affect folding, release from the ribosomes and stability of in vitro synthesized proteins, Int. J. Biochem. Cell Biol., 31, 231-241, https://doi.org/10.1016/S1357-2725(98)00143-5.

    Article  CAS  PubMed  Google Scholar 

  36. Kudlicki, W., Odom, O. W., Merrill, G., Kramer, G., and Hardesty, B. (1995) Inhibition of the release factor-dependent termination reaction on ribosomes by DnaJ and the N-terminal peptide of rhodanese, J. Bacteriol., 177, 5517-5522, https://doi.org/10.1128/jb.177.19.5517-5522.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kudlicki, W., Coffman, A., Kramer, G., and Hardesty, B. (1997) Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing, J. Biol. Chem., 272, 32206-32210, https://doi.org/10.1074/jbc.272.51.32206.

    Article  CAS  PubMed  Google Scholar 

  38. Roder, H., and Colón, W. (1997) Kinetic role of early intermediates in protein folding, Curr. Opin. Struct. Biol., 7, 15-28, https://doi.org/10.1016/s0959-440x(97)80004-8.

    Article  CAS  PubMed  Google Scholar 

  39. Ptitsyn, O. B. (1995) Molten globule and protein folding, Adv. Prot. Chem., 47, 83-229, https://doi.org/10.1016/s0065-3233(08)60546-x.

    Article  CAS  Google Scholar 

  40. Fedorov, A. N., and Baldwin, T. O. (1997) Cotranslational protein folding, J. Biol. Chem., 272, 32715-32718.

    Article  CAS  Google Scholar 

  41. De Prat Gay, G., Ruiz-Sanz, J., Neira, J. L., Corrales, F. J., Otzen, D. E., et al. (1995) Conformational pathway of the polypeptide chain of chymotrypsin inhibitor-2 growing from its N terminus in vitro. Parallels with the protein folding pathway, J. Mol. Biol., 254, 968-979, https://doi.org/10.1006/jmbi.1995.0669.

    Article  CAS  PubMed  Google Scholar 

  42. De Prat Gay, G., Ruiz-Sanz, J., Neira, J. L., Itzhaki, L. S., and Fersht, A. R. (1995) Folding of a nascent polypeptide chain in vitro: cooperative formation of structure in a protein module, Proc. Natl. Acad. Sci. USA, 92, 3683-3686, https://doi.org/10.1073/pnas.92.9.3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neira, J. L., and Fersht, A. R. (1999) Exploring the folding funnel of a polypeptide chain by biophysical studies on protein fragments, J. Mol. Biol., 285, 1309-1333, https://doi.org/10.1006/jmbi.1998.2249.

    Article  CAS  PubMed  Google Scholar 

  44. Hamlin, J., and Zabin, I. (1972) Galactosidase: immunological activity of ribosome-bound, growing polypeptide chains, Proc. Natl. Acad. Sci. USA, 69, 412-416, https://doi.org/10.1073/pnas.69.2.412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steinbacher, S., Miller, S., Baxa, U., Budisa, N., Weintraub, A., et al. (1997) Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage, J. Mol. Biol., 267, 865-880, https://doi.org/10.1006/jmbi.1997.0922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Friguet, B., Djavadi-Ohaniance, L., King, J., and Goldberg, M. E. (1994) In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies, J. Biol. Chem., 269, 15945-15949.

    Article  CAS  Google Scholar 

  47. Tokatlidis, K., Friguet, B., Deville-Bonne, D., Baleux, F., Fedorov, A. N., et al. (1995) Nascent chains: folding and chaperone interaction during elongation on ribosomes, Philos. Trans. R. Soc. B Biol. Sci., 348, 89-95, https://doi.org/10.1098/rstb.1995.0049.

    Article  CAS  Google Scholar 

  48. Clark, P. L., and King, J. (2001) A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates, J. Biol. Chem., 276, 25411-25420, https://doi.org/10.1074/jbc.M008490200.

    Article  CAS  PubMed  Google Scholar 

  49. Jain, M., Evans, M. S., King, J., and Clark, P. L. (2005) Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates, J. Biol. Chem., 280, 23032-23040, https://doi.org/10.1074/jbc.M501963200.

    Article  CAS  PubMed  Google Scholar 

  50. Evans, M. S., Clarke, T. F., and Clark, P. L. (2005) Conformations of co-translational folding intermediates, Protein Pept. Lett., 12, 189-195, https://doi.org/10.2174/0929866053005908.

    Article  CAS  PubMed  Google Scholar 

  51. Clarke, T. F., and Clark, P. L. (2008) Rare codons cluster, PLoS One, 3, e3412, https://doi.org/10.1371/journal.pone.0003412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evans, M. S., Sander, I. M., and Clark, P. L. (2008) Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo, J. Mol. Biol., 383, 683-692, https://doi.org/10.1016/j.jmb.2008.07.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fedorov, A. N., Friguet, B., Djavadi-Ohaniance, L., Alakhov, Y. B., and Goldberg, M. E. (1992) Folding on the ribosome of Escherichia coli tryptophan synthase beta subunit nascent chains probed with a conformation-dependent monoclonal antibody, J. Mol. Biol., 228, 351-358, https://doi.org/10.1016/0022-2836(92)90825-5.

    Article  CAS  PubMed  Google Scholar 

  54. Friguet, B., Fedorov, A., Serganov, A. A., Navon, A., and Goldberg, M. E. (1993) A radioimmunoassay-based method for measuring the true affinity of a monoclonal antibody with trace amounts of radioactive antigen: illustration with the products of a cell-free protein synthesis system, Anal. Biochem., 210, 344-350, https://doi.org/10.1006/abio.1993.1206.

    Article  CAS  PubMed  Google Scholar 

  55. Bergman, L. W., and Kuehl, W. M. (1979) Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides, J. Biol. Chem., 254, 5690-5694.

    Article  CAS  Google Scholar 

  56. Land, A., Zonneveld, D., and Braakman, I. (2003) Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage, FASEB J., 17, 1058-1067, https://doi.org/10.1096/fj.02-0811com.

    Article  CAS  PubMed  Google Scholar 

  57. Maggioni, M. C., Liscaljet, I. M., and Braakman, I. (2005) A critical step in the folding of influenza virus HA determined with a novel folding assay, Nat. Struct. Mol. Biol., 12, 258-263, https://doi.org/10.1038/nsmb897.

    Article  CAS  PubMed  Google Scholar 

  58. Kim, J., Klein, P. G., and Mullet, J. E. (1991) Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1, J. Biol. Chem., 266, 14931-14938.

    Article  CAS  Google Scholar 

  59. Mullet, J. E., Klein, P. G., and Klein, R. R. (1990) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability, Proc. Natl. Acad. Sci. USA, 87, 4038-4042, https://doi.org/10.1073/pnas.87.11.4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, W., Helenius, J., Braakman, I., and Helenius, A. (1995) Cotranslational folding and calnexin binding during glycoprotein synthesis, Proc. Natl. Acad. Sci. USA, 92, 6229-6233, https://doi.org/10.1073/pnas.92.14.6229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1997) Cotranslational folding of globin, J. Biol. Chem., 272, 10646-10651, https://doi.org/10.1074/jbc.272.16.10646.

    Article  CAS  PubMed  Google Scholar 

  62. Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1993) Cotranslational heme binding to nascent globin chains, FEBS Lett., 326, 261-263, https://doi.org/10.1016/0014-5793(93)81803-8.

    Article  CAS  PubMed  Google Scholar 

  63. Khushoo, A., Yang, Z., Johnson, A. E., and Skach, W. R. (2011) Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1, Mol. Cell, 41, 682-692, https://doi.org/10.1016/j.molcel.2011.02.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peters, T., and Davidson, L. K. (1982) The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds, J. Biol. Chem., 257, 8847-8853.

    Article  CAS  Google Scholar 

  65. Kudlicki, W., Chirgwin, J., Kramer, G., and Hardesty, B. (1995) Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome, Biochemistry, 34, 14284-14287, https://doi.org/10.1021/bi00044a003.

    Article  CAS  PubMed  Google Scholar 

  66. Makeyev, E. V., Kolb, V. A., and Spirin, A. S. (1996) Enzymatic activity of the ribosome-bound nascent polypeptide, FEBS Lett., 378, 166-170, https://doi.org/10.1016/0014-5793(95)01438-1.

    Article  CAS  PubMed  Google Scholar 

  67. Nicola, A. V., Chen, W., and Helenius, A. (1999) Co-translational folding of an alphavirus capsid protein in the cytosol of living cells, Nat. Cell Biol., 1, 341-345, https://doi.org/10.1038/14032.

    Article  CAS  PubMed  Google Scholar 

  68. Sánchez, I. E., Morillas, M., Zobeley, E., Kiefhaber, T., and Glockshuber, R. (2004) Fast folding of the two-domain semliki forest virus capsid protein explains co-translational proteolytic activity, J. Mol. Biol., 338, 159-167, https://doi.org/10.1016/j.jmb.2004.02.037.

    Article  CAS  PubMed  Google Scholar 

  69. Lin, L., DeMartino, G. N., and Greene, W. C. (1998) Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome, Cell, 92, 819-828, https://doi.org/10.1016/s0092-8674(00)81409-9.

    Article  CAS  PubMed  Google Scholar 

  70. Lin, L., DeMartino, G. N., and Greene, W. C. (2000) Cotranslational dimerization of the Rel homology domain of NF-kappaB1 generates p50-p105 heterodimers and is required for effective p50 production, EMBO J., 19, 4712-4722, https://doi.org/10.1093/emboj/19.17.4712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakahira, H., and Nagata, S. (2002) Co-translational folding of caspase-activated DNase with Hsp70, Hsp40, and inhibitor of caspase-activated DNase, J. Biol. Chem., 277, 3364-3370, https://doi.org/10.1074/jbc.M110071200.

    Article  CAS  PubMed  Google Scholar 

  72. Gilmore, R., Coffey, M. C., Leone, G., McLure, K., and Lee, P. W. (1996) Co-translational trimerization of the reovirus cell attachment protein, EMBO J., 15, 2651-2658.

    Article  CAS  Google Scholar 

  73. Leone, G., Coffey, M. C., Gilmore, R., Duncan, R., Maybaum, L., et al. (1996) C-terminal trimerization, but not N-terminal trimerization, of the reovirus cell attachment protein is a posttranslational and Hsp70/ATP-dependent process, J. Biol. Chem., 271, 8466-8471, https://doi.org/10.1074/jbc.271.14.8466.

    Article  CAS  PubMed  Google Scholar 

  74. Kleizen, B., van Vlijmen, T., de Jonge, H. R., and Braakman, I. (2005) Folding of CFTR is predominantly cotranslational, Mol. Cell, 20, 277-287, https://doi.org/10.1016/j.molcel.2005.09.007.

    Article  CAS  PubMed  Google Scholar 

  75. Matthews, B. W. (2005) The structure of E. coli beta-galactosidase, C. R. Biol., 328, 549-556, https://doi.org/10.1016/j.crvi.2005.03.006.

    Article  CAS  PubMed  Google Scholar 

  76. Jacobson, R. H., Zhang, X. J., DuBose, R. F., and Matthews, B. W. (1994) Three-dimensional structure of beta-galactosidase from E. coli, Nature, 369, 761-766, https://doi.org/10.1038/369761a0.

    Article  CAS  PubMed  Google Scholar 

  77. Langley, K. E., Villarejo, M. R., Fowler, A. V., Zamenhof, P. J., and Zabin, I. (1975) Molecular basis of beta-galactosidase alpha-complementation, Proc. Natl. Acad. Sci. USA, 72, 1254-1257, https://doi.org/10.1073/pnas.72.4.1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zeilstra-Ryalls, J. H., and Somerville, R. L. (1992) Protein-protein interaction in the alpha-complementation system of beta-galactosidase, Curr. Top. Cell. Reg., 33, 81-104, https://doi.org/10.1016/b978-0-12-152833-1.50011-3.

    Article  CAS  Google Scholar 

  79. Klappa, P., Freedman, R. B., and Zimmermann, R. (1995) Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation, Eur. J. Biochem., 232, 755-764.

    Article  CAS  Google Scholar 

  80. Roth, R. A., and Pierce, S. B. (1987) In vivo cross-linking of protein disulfide isomerase to immunoglobulins, Biochemistry, 26, 4179-4182, https://doi.org/10.1021/bi00388a001.

    Article  CAS  PubMed  Google Scholar 

  81. Bulleid, N. J., and Freedman, R. B. (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes, Nature, 335, 649-651, https://doi.org/10.1038/335649a0.

    Article  CAS  PubMed  Google Scholar 

  82. Hesterkamp, T., Hauser, S., Lütcke, H., and Bukau, B. (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains, Proc. Natl. Acad. Sci. USA, 93, 4437-4441.

    Article  CAS  Google Scholar 

  83. Valent, Q. A., Kendall, D. A., High, S., Kusters, R., Oudega, B., et al. (1995) Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides, EMBO J., 14, 5494-5505.

    Article  CAS  Google Scholar 

  84. Komar, A. A., and Jaenicke, R. (1995) Kinetics of translation of gamma B crystallin and its circularly permutated variant in an in vitro cell-free system: possible relations to codon distribution and protein folding, FEBS Lett., 376, 195-198, https://doi.org/10.1016/0014-5793(95)01275-0.

    Article  CAS  PubMed  Google Scholar 

  85. Komar, A. A. (2009) A pause for thought along the co-translational folding pathway, Trends Biochem. Sci., 34, 16-24, https://doi.org/10.1016/j.tibs.2008.10.002.

    Article  CAS  PubMed  Google Scholar 

  86. Purvis, I. J., Bettany, A. J. E., Santiago, T. C., Coggins, J. R., Duncan, K., et al. (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo: A hypothesis, J. Mol. Biol., 193, 413-417, https://doi.org/10.1016/0022-2836(87)90230-0.

    Article  CAS  PubMed  Google Scholar 

  87. Thanaraj, T. A., and Argos, P. (1996) Protein secondary structural types are differentially coded on messenger RNA, Protein Sci., 5, 1973-1983, https://doi.org/10.1002/pro.5560051003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adzhubei, A. A., Adzhubei, I. A., Krasheninnikov, I. A., and Neidle, S. (1996) Non-random usage of ‘degenerate’ codons is related to protein three-dimensional structure, FEBS Lett., 399, 78-82, https://doi.org/10.1016/s0014-5793(96)01287-2.

    Article  CAS  PubMed  Google Scholar 

  89. Mukhopadhyay, P., Basak, S., and Ghosh, T. C. (2007) Synonymous codon usage in different protein secondary structural classes of human genes: implication for increased non-randomness of GC3 rich genes towards protein stability, J. Biosci., 32, 947-963, https://doi.org/10.1007/s12038-007-0095-z.

    Article  CAS  PubMed  Google Scholar 

  90. Oresic, M., and Shalloway, D. (1998) Specific correlations between relative synonymous codon usage and protein secondary structure, J. Mol. Biol., 281, 31-48, https://doi.org/10.1006/jmbi.1998.1921.

    Article  CAS  PubMed  Google Scholar 

  91. Xie, T., Ding, D., Tao, X., and Dafu, D. (1998) The relationship between synonymous codon usage and protein structure, FEBS Lett., 434, 93-96, https://doi.org/10.1016/s0014-5793(98)00955-7.

    Article  CAS  PubMed  Google Scholar 

  92. Gu, W., Zhou, T., Ma, J., Sun, X., and Lu, Z. (2003) Folding type specific secondary structure propensities of synonymous codons, IEEE Trans. NanoBiosci., 2, 150-157, https://doi.org/10.1109/TNB.2003.817024.

    Article  Google Scholar 

  93. Thanaraj, T. A., and Argos, P. (1996) Ribosome-mediated translational pause and protein domain organization, Protein Sci., 5, 1594-1612, https://doi.org/10.1002/pro.5560050814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crombie, T., Swaffield, J. C., and Brown, A. J. (1992) Protein folding within the cell is influenced by controlled rates of polypeptide elongation, J. Mol. Biol., 228, 7-12, https://doi.org/10.1016/0022-2836(92)90486-4.

    Article  CAS  PubMed  Google Scholar 

  95. Crombie, T., Boyle, J. P., Coggins, J. R., and Brown, A. J. (1994) The folding of the bifunctional TRP3 protein in yeast is influenced by a translational pause which lies in a region of structural divergence with Escherichia coli indoleglycerol-phosphate synthase, Eur. J. Biochem., 226, 657-664, https://doi.org/10.1111/j.1432-1033.1994.tb20093.x.

    Article  CAS  PubMed  Google Scholar 

  96. Komar, A. A., Lesnik, T., and Reiss, C. (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation, FEBS Lett., 462, 387-391, https://doi.org/10.1016/s0014-5793(99)01566-5.

    Article  CAS  PubMed  Google Scholar 

  97. Cortazzo, P., Cerveñansky, C., Marín, M., Reiss, C., Ehrlich, R., et al. (2002) Silent mutations affect in vivo protein folding in Escherichia coli, Biochem. Biophys. Res. Commun., 293, 537-541, https://doi.org/10.1016/S0006-291X(02)00226-7.

    Article  CAS  PubMed  Google Scholar 

  98. Sharma, A. K., and O’Brien, E. P. (2018) Non-equilibrium coupling of protein structure and function to translation-elongation kinetics, Curr. Opin. Struct. Biol., 49, 94-103, https://doi.org/10.1016/j.sbi.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  99. Marin, M. (2008) Folding at the rhythm of the rare codon beat, Biotechnol. J., 3, 1047-1057, https://doi.org/10.1002/biot.200800089.

    Article  CAS  PubMed  Google Scholar 

  100. Angov, E., Hillier, C. J., Kincaid, R. L., and Lyon, J. A. (2008) Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host, PLoS One, 3, e2189, https://doi.org/10.1371/journal.pone.0002189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hatfield, G. W., and Roth, D. A. (2007) Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and translation engineering, Biotechnol. Ann. Rev., 13, 27-42, https://doi.org/10.1016/S1387-2656(07)13002-7.

    Article  CAS  Google Scholar 

  102. Bergman, L. W., and Kuehl, W. M. (1979) Formation of an intrachain disulfide bond on nascent immunoglobulin light chains, J. Biol. Chem., 254, 8869-8876.

    Article  CAS  Google Scholar 

  103. Bruckner, P., Eikenberry, E. F., and Prockop, D. J. (1981) Formation of the triple helix of type I procollagen in cellulo. A kinetic model based on cis-trans isomerization of peptide bonds, Eur. J. Biochem., 118, 607-613, https://doi.org/10.1111/j.1432-1033.1981.tb05562.x.

    Article  CAS  PubMed  Google Scholar 

  104. Berestovskaya, N. G., Shaloiko, L. A., Gorokhovatsky, A. Y., Bondar, V. S., Vysotski, E. S., et al. (1999) Cotranslational formation of active photoprotein obelin in a cell-free translation system: direct ultrahigh sensitive measure of the translation course, Anal. Biochem., 268, 72-78, https://doi.org/10.1006/abio.1998.3051.

    Article  CAS  PubMed  Google Scholar 

  105. Kolb, V. A., Makeyev, E. V., and Spirin, A. S. (1994) Folding of firefly luciferase during translation in a cell-free system, EMBO J., 13, 3631-3637.

    Article  CAS  Google Scholar 

  106. Alexandrov, N. (1993) Structural argument for N-terminal initiation of protein folding, Protein Sci., 2, 1989-1991, https://doi.org/10.1002/pro.5560021121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Contreras Martínez, L. M., Martínez-Veracoechea, F. J., Pohkarel, P., Stroock, A. D., Escobedo, F. A., et al. (2006) Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study, Biotechnol. Bioeng., 94, 105-117, https://doi.org/10.1002/bit.20832.

    Article  CAS  PubMed  Google Scholar 

  108. Huard, F. P. E., Deane, C. M., and Wood, G. R. (2006) Modelling sequential protein folding under kinetic control, Bioinformatics, 22, e203-e210, https://doi.org/10.1093/bioinformatics/btl248.

    Article  CAS  PubMed  Google Scholar 

  109. Deane, C. M., Dong, M., Huard, F. P. E., Lance, B. K., and Wood, G. R. (2007) Cotranslational protein folding – fact or fiction? Bioinformatics, 23, i142-i148, https://doi.org/10.1093/bioinformatics/btm175.

    Article  CAS  PubMed  Google Scholar 

  110. Taylor, W. R. (2006) Topological accessibility shows a distinct asymmetry in the folds of beta-alpha proteins, FEBS Lett., 580, 5263-5267, https://doi.org/10.1016/j.febslet.2006.08.070.

    Article  CAS  PubMed  Google Scholar 

  111. Lu, H.-M., and Liang, J. (2008) A model study of protein nascent chain and cotranslational folding using hydrophobic-polar residues, Proteins, 70, 442-449, https://doi.org/10.1002/prot.21575.

    Article  CAS  PubMed  Google Scholar 

  112. Fedorov, A. N., and Baldwin, T. O. (1995) Contribution of cotranslational folding to the rate of formation of native protein structure, Proc. Natl. Acad. Sci. USA, 92, 1227-1231, https://doi.org/10.1073/pnas.92.4.1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fedorov, A. N., and Baldwin, T. O. (1999) Process of biosynthetic protein folding determines the rapid formation of native structure, J. Mol. Biol., 294, 579-586, https://doi.org/10.1006/jmbi.1999.3281.

    Article  CAS  PubMed  Google Scholar 

  114. Shieh, Y.-W., Minguez, P., Bork, P., Auburger, J. J., Guilbride, D. L., et al. (2015) Operon structure and cotranslational subunit association direct protein assembly in bacteria, Science, 350, 678-680, https://doi.org/10.1126/science.aac8171.

    Article  CAS  PubMed  Google Scholar 

  115. Kramer, G., Patzelt, H., Rauch, T., Kurz, T. A., Vorderwülbecke, S., et al. (2004) Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli, J. Biol. Chem., 279, 14165-14170, https://doi.org/10.1074/jbc.M313635200.

    Article  CAS  PubMed  Google Scholar 

  116. Baram, D., Pyetan, E., Sittner, A., Auerbach-Nevo, T., Bashan, A., et al. (2005) Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action, Proc. Natl. Acad. Sci. USA, 102, 12017-12022, https://doi.org/10.1073/pnas.0505581102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., et al. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins, Nature, 431, 590-596, https://doi.org/10.1038/nature02899.

    Article  CAS  PubMed  Google Scholar 

  118. Morgado, L., Burmann, B. M., Sharpe, T., Mazur, A., and Hiller, S. (2017) The dynamic dimer structure of the chaperone Trigger Factor, Nat. Commun., 8, 1992, https://doi.org/10.1038/s41467-017-02196-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saio, T., Kawagoe, S., Ishimori, K., and Kalodimos, C. G. (2018) Oligomerization of a molecular chaperone modulates its activity, ELife, 7, e35731, https://doi.org/10.7554/eLife.35731.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kaiser, C. M., Chang, H.-C., Agashe, V. R., Lakshmipathy, S. K., Etchells, S. A., et al. (2006) Real-time observation of trigger factor function on translating ribosomes, Nature, 444, 455-460, https://doi.org/10.1038/nature05225.

    Article  CAS  PubMed  Google Scholar 

  121. Saio, T., Guan, X., Rossi, P., Economou, A., and Kalodimos, C. G. (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone, Science, 344, 1250494, https://doi.org/10.1126/science.1250494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beckmann, R. P., Mizzen, L. E., and Welch, W. J. (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly, Science, 248, 850-854, https://doi.org/10.1126/science.2188360.

    Article  CAS  PubMed  Google Scholar 

  123. Gaitanaris, G. A., Vysokanov, A., Hung, S. C., Gottesman, M. E., and Gragerov, A. (1994) Successive action of Escherichia coli chaperones in vivo, Mol. Microbiol., 14, 861-869, https://doi.org/10.1111/j.1365-2958.1994.tb01322.x.

    Article  CAS  PubMed  Google Scholar 

  124. Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M., and Craig, E. A. (1992) The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis, Cell, 71, 97-105, https://doi.org/10.1016/0092-8674(92)90269-i.

    Article  CAS  PubMed  Google Scholar 

  125. Kudlicki, W., Odom, O. W., Kramer, G., and Hardesty, B. (1994) Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. Analysis by fluorescence, J. Mol. Biol., 244, 319-331, https://doi.org/10.1006/jmbi.1994.1732.

    Article  CAS  PubMed  Google Scholar 

  126. Svetlov, M. S., Kommer, A., Kolb, V. A., and Spirin, A. S. (2006) Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family, Protein Sci., 15, 242-247, https://doi.org/10.1110/ps.051752506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F. U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones, Nature, 370, 111-117, https://doi.org/10.1038/370111a0.

    Article  CAS  PubMed  Google Scholar 

  128. Frydman, J., and Hartl, F. U. (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms, Science, 272, 1497-1502, https://doi.org/10.1126/science.272.5267.1497.

    Article  CAS  PubMed  Google Scholar 

  129. Lorimer, G. H. (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo, FASEB J., 10, 5-9, https://doi.org/10.1096/fasebj.10.1.8566548.

    Article  CAS  PubMed  Google Scholar 

  130. Reid, B. G., and Flynn, G. C. (1996) GroEL binds to and unfolds rhodanese posttranslationally, J. Biol. Chem., 271, 7212-7217, https://doi.org/10.1074/jbc.271.12.7212.

    Article  CAS  PubMed  Google Scholar 

  131. Schatz, G. (1996) The protein import system of mitochondria, J. Biol. Chem., 271, 31763-31766, https://doi.org/10.1074/jbc.271.50.31763.

    Article  CAS  PubMed  Google Scholar 

  132. Ying, B.-W., Taguchi, H., and Ueda, T. (2006) Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding, J. Biol. Chem., 281, 21813-21819, https://doi.org/10.1074/jbc.M603091200.

    Article  CAS  PubMed  Google Scholar 

  133. Ying, B.-W., Taguchi, H., Kondo, M., and Ueda, T. (2005) Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides, J. Biol. Chem., 280, 12035-12040, https://doi.org/10.1074/jbc.M500364200.

    Article  CAS  PubMed  Google Scholar 

  134. Shimizu, Y., Kuruma, Y., Ying, B.-W., Umekage, S., and Ueda, T. (2006) Cell-free translation systems for protein engineering, FEBS J., 273, 4133-4140, https://doi.org/10.1111/j.1742-4658.2006.05431.x.

    Article  CAS  PubMed  Google Scholar 

  135. Baker, D., and Agard, D. A. (1994) Kinetics versus thermodynamics in protein folding, Biochemistry, 33, 7505-7509, https://doi.org/10.1021/bi00190a002.

    Article  CAS  PubMed  Google Scholar 

  136. Eder, J., Rheinnecker, M., and Fersht, A. R. (1993) Folding of subtilisin BPN’: characterization of a folding intermediate, Biochemistry, 32, 18-26, https://doi.org/10.1021/bi00052a004.

    Article  CAS  PubMed  Google Scholar 

  137. Shinde, U. P., Liu, J. J., and Inouye, M. (1997) Protein memory through altered folding mediated by intramolecular chaperones, Nature, 389, 520-522, https://doi.org/10.1038/39097.

    Article  CAS  PubMed  Google Scholar 

  138. Weissman, J. S., and Kim, P. S. (1992) The pro region of BPTI facilitates folding, Cell, 71, 841-851, https://doi.org/10.1016/0092-8674(92)90559-u.

    Article  CAS  PubMed  Google Scholar 

  139. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., et al. (1995) Principles of protein folding--a perspective from simple exact models, Protein Sci., 4, 561-602.

    Article  CAS  Google Scholar 

  140. Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z., and Socci, N. D. (1995) Toward an outline of the topography of a realistic protein-folding funnel, Proc. Natl. Acad. Sci. USA, 92, 3626-3630, https://doi.org/10.1073/pnas.92.8.3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Waudby, C. A., Dobson, C. M., and Christodoulou, J. (2019) Nature and regulation of protein folding on the ribosome, Trends Biochem. Sci., 44, 914-926, https://doi.org/10.1016/j.tibs.2019.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fiaux, J., Horst, J., Scior, A., Preissler, S., Koplin, A., et al. (2010) Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction, J. Biol. Chem., 285, 3227-3234, https://doi.org/10.1074/jbc.M109.075804.

    Article  CAS  PubMed  Google Scholar 

  143. Fedorov, A. N., and Baldwin, T. O. (1997) GroE modulates kinetic partitioning of folding intermediates between alternative states to maximize the yield of biologically active protein, J. Mol. Biol., 268, 712-723, https://doi.org/10.1006/jmbi.1997.1007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author dedicates this review to his mentors – Lev P. Ovchinnikov and Alexander S. Spirin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey N. Fedorov.

Ethics declarations

The author declares no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by the author.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2022, Vol. 62, pp. 279-318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.N. Biosynthetic Protein Folding and Molecular Chaperons. Biochemistry Moscow 87 (Suppl 1), S128–S145 (2022). https://doi.org/10.1134/S0006297922140115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922140115

Keywords

Navigation