Skip to main content
Log in

Trends in Human Species-Specific Lifespan and Actuarial Aging Rate

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

A COMMENTARY to this article was published on 01 January 2023

Abstract

The compensation effect of mortality (CEM) was tested and species-specific lifespan was estimated using data on one-year age-specific death rates from the Human Mortality Database (HMD). CEM was confirmed using this source of the data and human species-specific lifespan estimates were obtained, which were similar to the estimates published before. Three models (Gompertz–Makeham, Gompertz–Makeham with mean-centered age, and Gompertz) produced similar estimates of the species-specific lifespan. These estimates demonstrated some increase over time. Attempts to measure aging rates through the Gompertz slope parameter led to the conclusion that actuarial aging rates were stable during most of the 20th century, but recently demonstrated an increase over time in the majority (74%) of studied populations. This recent phenomenon is most likely caused by more rapid historical decline of mortality at the younger adult age groups compared to the older age groups, thus making the age gradient in mortality steeper over time. There is no biomedical reason to believe that human aging rates accelerated recently, so that the actuarial aging rate is probably not a good measure of true aging rate (rate of functional loss). Therefore, better measures of aging rate need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York.

  2. Gavrilov, L. A., and Gavrilova, N. S. (2006) Reliability Theory of Aging and Longevity, in Handbook of the Biology of Aging (Masoro, E. J., and Austad, S. N. eds) 6 Edn., Academic Press, San Diego, pp. 3-42.

  3. Hawkes, K., Smith, K. R., and Blevins, J. K. (2012) Human actuarial aging increases faster when background death rates are lower: a consequence of differential heterogeneity? Evolution, 66, 103-114, https://doi.org/10.1111/j.1558-5646.2011.01414.x.

    Article  PubMed  Google Scholar 

  4. Strehler, B. L., and Mildvan, A. S. (1960) General theory of mortality and aging, Science, 132, 14-21, https://doi.org/10.1126/science.132.3418.14.

    Article  CAS  PubMed  Google Scholar 

  5. Gavrilov, L. A. (1984) Does the limit of the life-span really exist? Biofizika, 29, 908-909.

    CAS  PubMed  Google Scholar 

  6. Le Bras, H. (1976) Mortality laws and limited age, Population, 31, 655-692.

    Article  Google Scholar 

  7. Golubev, A. (2019) A 2D analysis of correlations between the parameters of the Gompertz-Makeham model (or law?) of relationships between aging, mortality, and longevity, Biogerontology, 20, 799-821, https://doi.org/10.1007/s10522-019-09828-z.

    Article  CAS  PubMed  Google Scholar 

  8. Burger, O., and Missov, T. I. (2016) Evolutionary theory of ageing and the problem of correlated Gompertz parameters, J. Theor. Biol., 408, 34-41, https://doi.org/10.1016/j.jtbi.2016.08.002.

    Article  PubMed  Google Scholar 

  9. Li, T., and Anderson, J. J. (2015) The Strehler-Mildvan correlation from the perspective of a two-process vitality model, Popul. Stud., 69, 91-104, https://doi.org/10.1080/00324728.2014.992358.

    Article  Google Scholar 

  10. Yashin, A. I., Ukraintseva, S. V., Boiko, S. I., and Arbeev, K. G. (2002) Individual aging and mortality rate: how are they related? Soc. Biol., 49, 206-217, https://doi.org/10.1080/19485565.2002.9989059.

    Article  PubMed  Google Scholar 

  11. Li, T., Yang, Y. C., and Anderson, J. J. (2013) Mortality increase in late-middle and early-old age: heterogeneity in death processes as a new explanation, Demography, 50, 1563-1591, https://doi.org/10.1007/s13524-013-0222-4.

    Article  PubMed  Google Scholar 

  12. Yashin, A. I., Begun, A. S., Boiko, S. I., Ukraintseva, S. V., and Oeppen, J. (2002) New age patterns of survival improvement in Sweden: do they characterize changes in individual aging? Mech. Ageing Dev., 123, 637-647, https://doi.org/10.1016/s0047-6374(01)00410-9.

    Article  PubMed  Google Scholar 

  13. Golubev, A. (2004) Does Makeham make sense? Biogerontology, 5, 159-167, https://doi.org/10.1023/B:BGEN.0000031153.63563.58.

    Article  CAS  PubMed  Google Scholar 

  14. Tai, T. H., and Noymer, A. (2018) Models for estimating empirical Gompertz mortality: with an application to evolution of the Gompertzian slope, Popul. Ecol., 60, 171-184, https://doi.org/10.1007/s10144-018-0609-6.

    Article  Google Scholar 

  15. Yashin, A. I., Begun, A. S., Boiko, S. I., Ukraintseva, S. V., and Oeppen, J. (2001) The new trends in survival improvement require a revision of traditional gerontological concepts, Exp. Gerontol., 37, 157-167, https://doi.org/10.1016/s0531-5565(01)00154-1.

    Article  CAS  PubMed  Google Scholar 

  16. Bongaarts, J. (2009) Trends in senescent life expectancy, Popul. Stud., 63, 203-213, https://doi.org/10.1080/00324720903165456.

    Article  Google Scholar 

  17. Gavrilov, L. A., Gavrilova, N. S., and Yaguzhinsky, L. S. (1978) The main patterns of aging and death of animals from the point of view of the theory of reliability [in Russian], J. Gen. Biol., 39, 734-742.

    CAS  Google Scholar 

  18. Bongaarts, J. (2005) Long-range trends in adult mortality: Models and projection methods, Demography, 42, 23-49, https://doi.org/10.1353/dem.2005.0003.

    Article  PubMed  Google Scholar 

  19. Missov, T. I., Lenart, A., Nemeth, L., Canudas-Romo, V., and Vaupel, J. (2015) The Gompertz force of mortality in terms of the modal age at death, Demogr. Res., 32, 1031-1047, https://doi.org/10.4054/DemRes.2015.32.36.

    Article  Google Scholar 

  20. Wilmoth, J. R., and Horiuchi, S. (1999) Rectangularization revisited: variability of age at death within human populations, Demography, 36, 475-495, https://doi.org/10.2307/2648085.

    Article  CAS  PubMed  Google Scholar 

  21. Velilla, S. (2018) A note on collinearity diagnostics and centering, Am. Stat., 72, 140-146, https://doi.org/10.1080/00031305.2016.1264312.

    Article  Google Scholar 

  22. Wood, F. S. (1984) Comment: effect of centering on collinearity and interpretation of the constant, Am. Stat., 38, 88-90, https://doi.org/10.1080/00031305.1984.10483173.

    Article  Google Scholar 

  23. Tarkhov, A. E., Menshikov, L. I., and Fedichev, P. O. (2017) Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 416, 180-189, https://doi.org/10.1016/j.jtbi.2017.01.017.

    Article  PubMed  Google Scholar 

  24. URL: Human Mortality Database. University of California, Berkeley (USA), Available at https://www.mortality.org/ (retrieved on 6.5.2022).

  25. Gavrilov, L. A., Gavrilova, N. S., and Nosov, V. N. (1983) Human life span stopped increasing: why? Gerontology, 29, 176-180, https://doi.org/10.1159/000213111.

    Article  CAS  PubMed  Google Scholar 

  26. Drefahl, S., Lundstrom, H., Modig, K., and Ahlbom, A. (2012) The era of centenarians: mortality of the oldest old in Sweden, J. Intern. Med., 272, 100-102, https://doi.org/10.1111/j.1365-2796.2012.02518.x.

    Article  CAS  PubMed  Google Scholar 

  27. Gavrilov, L. A., Gavrilova, N. S., and Krut’ko, V. N. (2017) The future of human longevity, Gerontology, 63, 524-526, https://doi.org/10.1159/000477965.

    Article  PubMed  Google Scholar 

  28. Robine, J. M., and Cubaynes, S. (2017) Worldwide demography of centenarians, Mech. Ageing Dev., 165, 59-67, https://doi.org/10.1016/j.mad.2017.1003.1004.

    Article  PubMed  Google Scholar 

  29. Tuljapurkar, S., Li, N., and Boe, C. (2000) A universal pattern of mortality decline in the G7 countries, Nature, 405, 789-792, https://doi.org/10.1038/35015561.

    Article  CAS  PubMed  Google Scholar 

  30. Gavrilov, L. A., and Gavrilova, N. S. (2020) What can we learn about aging and COVID-19 by studying mortality? Biochemistry (Moscow), 85, 1499-1504, https://doi.org/10.1134/S0006297920120032.

    Article  CAS  PubMed  Google Scholar 

  31. Skulachev, V. P., Shilovsky, G. A., Putyatina, T. S., Popov, N. A., Markov, A. V., Skulachev, M. V., and Sadovnichii, V. A. (2020) Perspectives of Homo sapiens lifespan extension: focus on external or internal resources? Aging, 12, 5566-5584, https://doi.org/10.18632/aging.102981.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous journal referees for very constructive comments.

Funding

This work was partially financially supported by the National Institutes of Health (project no. NIH R21AG054849).

Author information

Authors and Affiliations

Authors

Contributions

L.G. designed the study, analyzed and interpreted results, edited the manuscript. N.G. conducted statistical analyses and prepared the manuscript.

Corresponding author

Correspondence to Leonid A. Gavrilov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, L.A., Gavrilova, N.S. Trends in Human Species-Specific Lifespan and Actuarial Aging Rate. Biochemistry Moscow 87, 1622–1633 (2022). https://doi.org/10.1134/S0006297922120173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922120173

Keywords

Navigation