Skip to main content
Log in

Rational Design of ssODN to Correct Mutations by Gene Editing

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Gene editing allows to make a variety of targeted changes in genome, which can potentially be used to treat hereditary human diseases. Despite numerous studies in this area, effectiveness of gene editing methods for correcting mutations is still low, so these methods are not allowed in routine practice. It has been shown that rational design of genome editing components can significantly increase efficiency of mutation correction. In this work, we propose design of single-stranded oligodeoxyribonucleotides (ssODNs) to increase efficiency of gene editing. Using a model system to repair knocked out EGFP that is integrated into the genome of HEK293T cell culture, we have shown that only a small part of ssODN (about 20 nucleotides: from the 15th nucleotide at 3′-end to the 4th nucleotide at 5′-end), a donor molecule for repairing double-stranded DNA breaks, is integrated into the site of the break. Based on the obtained data, it is possible to rationally approach the design of ssODNs to correct mutations using CRISPR-Cas9 method for the development of gene therapy for hereditary human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

Cas:

CRISPR-associated protein

CRISPR:

clustered regularly interspaced short palindromic repeats

DSB:

double-strand break

NHEJ:

non-homologous end joining

sgRNA:

spacer of guide RNA

ssODN:

single-stranded oligodeoxyribonucleotide

SSTR:

single strand template repair

References

  1. Fellmann, C., Gowen, B. G., and Lin, P. C. (2017) Cornerstones of CRISPR-Cas in drug discovery and therapy, Nat. Rev. Drug Discov., 16, 89-100, https://doi.org/10.1038/nrd.2016.238.

    Article  CAS  PubMed  Google Scholar 

  2. Peters-Hall, J. R., Coquelin, M. L., Torres, M. J., LaRanger, R., Alabi, B. R., et al. (2018) Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function, Am. J. Physiol. Lung Cell Mol. Physiol., 315, L313-L327, https://doi.org/10.1152/ajplung.00355.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smirnikhina, S. A., Kondrateva, E. V., Adilgereeva, E. P., Anuchina, A. A., Zaynitdinova, M. I., et al. (2020) P.F508del editing in cells from cystic fibrosis patients, PLoS One, 15, e0242094, https://doi.org/10.1371/journal.pone.0242094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., and Corn, J. E. (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nat. Biotechnol., 34, 339-344, https://doi.org/10.1038/nbt.3481.

    Article  CAS  PubMed  Google Scholar 

  5. Guha, T. K., Wai, A., and Hausner, G. (2017) Programmable genome editing tools and their regulation for efficient genome engineering, Comput. Struct. Biotechnol. J., 15, 146-160, https://doi.org/10.1016/j.csbj.2016.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, W. H., and Chandrasegaran, S. (2005) Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells, Nucleic Acids Res., 33, 5978-5990, https://doi.org/10.1093/nar/gki912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cermak, T., Doyle, E. L., Christian, M., Wang, Li, Zhang, Y., et al. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res., 39, e82, https://doi.org/10.1093/nar/gkr218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816-821, https://doi.org/10.1126/science.1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, M., Rehman, S., Tang, X., Gu, K., Fan, Q., et al. (2019) Methodologies for improving HDR efficiency, Front. Genet., 9, https://doi.org/10.3389/fgene.2018.00691.

    Article  Google Scholar 

  10. Seol, J. H., Shim, E. Y., and Lee, S. E. (2018) Microhomology-mediated end joining: Good, bad and ugly, Mutat. Res., 809, 81-87, https://doi.org/10.1016/j.mrfmmm.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  11. Davis, L., Zhang, Y., and Maizels, N. (2018) Assaying repair at DNA nicks, Methods Enzymol., 601, 71-89, https://doi.org/10.1016/bs.mie.2017.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gallagher, D. N., and Haber, J. E. (2021) Single-strand template repair: Key insights to increase the efficiency of gene editing, Curr. Genet., 67, 747-753, https://doi.org/10.1007/s00294-021-01186-z.

    Article  CAS  PubMed  Google Scholar 

  13. Hu, Z., Zhou, M., Wu, Y., Li, Z., Liu, X., et al. (2019) ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A-patient-derived iPSCs and ECs, Mol. Ther. Nucleic Acids, 17, 198-209, https://doi.org/10.1016/j.omtn.2019.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett, H., Aguilar-Martinez, E., and Adamson, A. D. (2021) CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR, Methods, 191, 3-14, https://doi.org/10.1016/j.ymeth.2020.10.012.

    Article  CAS  PubMed  Google Scholar 

  15. Cristea, S., Freyvert, Y., and Santiago, Y. (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration, Biotechnol. Bioeng., 110, 871-880, https://doi.org/10.1002/bit.24733.

    Article  CAS  PubMed  Google Scholar 

  16. Fueller, J., Herbst, K., Meurer, M., Gubicza, K., Kurtulmus, B., et al. (2020) CRISPR-Cas12a-assisted PCR tagging of mammalian genes, J. Cell Biol., 219, e201910210, https://doi.org/10.1083/jcb.201910210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bai, H., Liu, L., An, K., Lu, X., Harrison, M., et al. (2020) CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish, BMC Genomics, 21, 67, https://doi.org/10.1186/s12864-020-6493-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim, D., Sreekanth, V., Cox, K. J., Law, B. K., Wagner, B. K., et al. (2020) Engineering designer beta cells with a CRISPR-Cas9 conjugation platform, Nat. Commun., 11, 4043, https://doi.org/10.1038/s41467-020-17725-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harmsen, T., Klaasen, S., van de Vrugt, H., and Riele, H. T. (2018) DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break, Nucleic Acids Res., 46, 2945-2955, https://doi.org/10.1093/nar/gky076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galagher, D. N., Pham, N., Tsai, A. M., Janto, N. V., Choi, J., et al. (2020) A Rad51-independent pathway promotes single-strand template repair in gene editing, PLoS Genet., 16, e1008689, https://doi.org/10.1371/journal.pgen.1008689.

    Article  CAS  Google Scholar 

  21. Serebrovskaya, E. O., Podvalnaya, N. M., Dudenkova, V. V., Efremova, A. S., Gurskaya, N. G., et al. (2020) Genetically encoded fluorescent sensor for poly-ADP-ribose, Int. J. Mol. Sci., 21, 5004, https://doi.org/10.3390/ijms21145004.

    Article  CAS  PubMed Central  Google Scholar 

  22. Brinkman, E. K., Kousholt, A. N., Harmsen, T., Leemans, C., Chen, T., et al. (2018) Easy quantification of template-directed CRISPR/Cas9 editing, Nucleic Acids Res., 46, e58, https://doi.org/10.1093/nar/gky164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Etard, C., Joshi, S., and Stegmaier, J., (2017) Tracking of indels by DEcomposition is a Simple and effective method to assess efficiency of guide RNAs in zebrafish, Zebrafish, 14, 586-588, https://doi.org/10.1089/zeb.2017.1454.

    Article  CAS  PubMed  Google Scholar 

  24. Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P., and Pruett-Miller, S. M. (2018) A survey of validation strategies for CRISPR-Cas9 editing, Sci. Rep., 8, 888, https://doi.org/10.1038/s41598-018-19441-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ph.D. N. G. Gurskaya from the Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, for assistance in obtaining the HEK293T-GFPmut cell culture.

Funding

This work was financially supported by the State Budget Project of the Ministry of Science and Higher Education of the Russian Federation for Research Centre for Medical Genetics. Creation of the HEK293T-GFPmut cell culture was funded by the Russian Foundation for Basic Research, grant No. 19-29-04044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Smirnikhina.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodina, O.V., Anuchina, A.A., Zainitdinova, M.I. et al. Rational Design of ssODN to Correct Mutations by Gene Editing. Biochemistry Moscow 87, 464–471 (2022). https://doi.org/10.1134/S0006297922050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922050078

Keywords

Navigation