Skip to main content
Log in

Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A-minor motifs are RNA tertiary structure motifs that generally involve a canonical base pair and an adenine base forming hydrogen bonds with the minor groove of the base pair. Such motifs are among the most common tertiary interactions in known RNA structures, comparable in number with the non-canonical base pairs. They are often found in functionally important regions of non-coding RNAs and, in particular, play a central role in protein synthesis. Here, we review local variations of the A-minor geometry and discuss difficulties associated with their annotation, as well as various structural contexts and common A-minor co-motifs, and diverse functions of A-minors in various processes in a living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Lekka, E., and Hall, J. (2018) Noncoding RNAs in disease, FEBS Lett., 592, 2884-2900, https://doi.org/10.1002/1873-3468.13182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Novikova, I. V., Hennelly, S. P., Tung, C. S., and Sanbonmatsu, K. Y. (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs, J. Mol. Biol., 425, 3731-3746, https://doi.org/10.1016/j.jmb.2013.02.030.

    Article  CAS  PubMed  Google Scholar 

  3. Leontis, N. B., Lescoute, A., and Westhof, E. (2006) The building blocks and motifs of RNA architecture, Curr. Opin. Struct. Biol., 16, 279-287, https://doi.org/10.1016/j.sbi.2006.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B., and Steitz, T. A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. USA, 98, 4899-4903, https://doi.org/10.1073/pnas.081082398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy, F. L., and Cech, T. R. (1994) GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain, J. Mol. Biol., 236, 49-63, https://doi.org/10.1006/jmbi.1994.1117.

    Article  CAS  PubMed  Google Scholar 

  6. Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., et al. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 273, 1678-1685, https://doi.org/10.1126/science.273.5282.1678.

    Article  CAS  PubMed  Google Scholar 

  7. Scott, W. G., Finch, J. T., and Klug, A. (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage, Cell, 81, 991-1002, https://doi.org/10.1016/S0092-8674(05)80004-2.

    Article  CAS  PubMed  Google Scholar 

  8. Nissen, P. (2020) The a-minor motif, in Structural Insights into Gene Expression and Protein Synthesis, pp. 461-463, https://doi.org/10.1142/9789811215865_0055.

  9. Doherty, E. A., Batey, R. T., Masquida, B., and Doudna, J. A. (2001) A universal mode of helix packing in RNA, Nat. Struct. Biol., 8, 339-343, https://doi.org/10.1038/86221.

    Article  CAS  PubMed  Google Scholar 

  10. Strobel, S. A. (2002) Biochemical identification of A-minor motifs within RNA tertiary structure by interference analysis, Biochem. Soc. Transact., 30, 1126-1131, https://doi.org/10.1042/bst0301126.

    Article  CAS  Google Scholar 

  11. Krasilnikov, A. S., Yang, X., Pan, T., and Mondragón, A. (2003) Crystal structure of the specificity domain of ribonuclease P, Nature, 421, 760-764, https://doi.org/10.1038/nature01386.

    Article  CAS  PubMed  Google Scholar 

  12. Krasilnikov, A. S., Xiao, Y., Pan, T., and Mondragón, A. (2004) Basis for structural diversity in homologous RNAs, Science, 306, 104-107, https://doi.org/10.1126/science.1101489.

    Article  CAS  PubMed  Google Scholar 

  13. Nagai, K., Oubridge, C., Kuglstatter, A., Menichelli, E., Isel, C., and Jovine, L. (2003) Structure, function and evolution of the signal recognition particle, EMBO J., 22, 3479-3485, https://doi.org/10.1093/emboj/cdg337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schüler, M., Connell, S. R., Lescoute, A., Giesebrecht, J., Dabrowski, M., et al. (2006) Structure of the ribosome-bound cricket paralysis virus IRES RNA, Nat. Struct. Mol. Biol., 13, 1092-1096, https://doi.org/10.1038/nsmb1177.

    Article  CAS  PubMed  Google Scholar 

  15. Mitton-Fry, R. M., DeGregorio, S. J., Wang, J., Steitz, T. A., and Steitz, J. A. (2010) Poly (A) tail recognition by a viral RNA element through assembly of a triple helix, Science, 330, 1244-1247, https://doi.org/10.1126/science.1195858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen, L. A., Wang, J., and Steitz, T. A. (2017) Crystal structure of Pistol, a class of self-cleaving ribozyme, Proc. Natl. Acad. Sci. USA, 114, 1021-1026, https://doi.org/10.1073/pnas.1611191114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xue, S., Calvin, K., and Li, H. (2006) RNA recognition and cleavage by a splicing endonuclease, Science, 312, 906-910, https://doi.org/10.1126/science.1126629.

    Article  CAS  PubMed  Google Scholar 

  18. Serganov, A., Yuan, Y. R., Pikovskaya, O., Polonskaia, A., Malinina, L., et al. (2004) Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs, Chem. Biol., 11, 1729-1741, https://doi.org/10.1016/j.chembiol.2004.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dann, C. E. 3rd, Wakeman, C. A., Sieling, C. L., Baker, S. C., Irnov, I., and Winkler, W. C. (2007) Structure and mechanism of a metal-sensing regulatory RNA, Cell, 130, 878-892, https://doi.org/10.1016/j.cell.2007.06.051.

    Article  CAS  PubMed  Google Scholar 

  20. Jones, C. P., and Ferré-D’Amaré, A. R. (2015) RNA quaternary structure and global symmetry, Trends Biochem. Sci., 40, 211-220, https://doi.org/10.1016/j.tibs.2015.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown, J. A., Bulkley, D., Wang, J., Valenstein, M. L., Yario, T. A., et al. (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix, Nat. Struct. Mol. Biol., 21, 633, https://doi.org/10.1038/nsmb.2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein, D. J., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2001) The kink‐turn: a new RNA secondary structure motif, EMBO J., 20, 4214-4221, https://doi.org/10.1093/emboj/20.15.4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Réblová, K., Šponer, J. E., Špačková, N., Beššeová, I., and Šponer, J. (2011) A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis, J. Phys. Chem. B, 115, 13897-13910, https://doi.org/10.1021/jp2065584.

    Article  CAS  PubMed  Google Scholar 

  24. Geary, C., Baudrey, S., and Jaeger, L. (2008) Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors, Nucleic Acids Res., 36, 1138-1152, https://doi.org/10.1093/nar/gkm1048.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, L., Chai, D., Fraser, M. E., and Zimmerly, S. (2012) Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures, PLoS One, 7, e49225, https://doi.org/10.1371/journal.pone.0049225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fiore, J. L., and Nesbitt, D. J. (2013) An RNA folding motif: GNRA tetraloop–receptor interactions, Quart. Rev. Biophys., 46, 223-264, https://doi.org/10.1017/S0033583513000048.

    Article  CAS  Google Scholar 

  27. Aalberts, D. P., and Hodas, N. O. (2005) Asymmetry in RNA pseudoknots: observation and theory, Nucleic Acids Res., 33, 2210-2214, https://doi.org/10.1093/nar/gki508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giedroc, D. P., and Cornish, P. V. (2009) Frameshifting RNA pseudoknots: structure and mechanism, Virus Res., 139, 193-208, https://doi.org/10.1016/j.virusres.2008.06.008.

    Article  CAS  PubMed  Google Scholar 

  29. Lescoute, A., and Westhof, E. (2006) Topology of three-way junctions in folded RNAs, RNA, 12, 83-93, https://doi.org/10.1261/rna.2208106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xin, Y., Laing, C., Leontis, N. B., and Schlick, T. (2008) Annotation of tertiary interactions in RNA structures reveals variations and correlations, RNA, 14, 2465-2477, https://doi.org/10.1261/rna.1249208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laing, C., and Schlick, T. (2009) Analysis of four-way junctions in RNA structures, J. Mol. Biol., 390, 547-559, https://doi.org/10.1016/j.jmb.2009.04.084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cruz, J. A., and Westhof, E. (2009) The dynamic landscapes of RNA architecture, Cell, 136, 604-609, https://doi.org/10.1016/j.cell.2009.02.003.

    Article  CAS  PubMed  Google Scholar 

  33. Geary, C., Chworos, A., and Jaeger, L. (2011) Promoting RNA helical stacking via A-minor junctions, Nucleic Acids Res., 39, 1066-1080, https://doi.org/10.1093/nar/gkq748.

    Article  CAS  PubMed  Google Scholar 

  34. Tamura, M., and Holbrook, S. R. (2002) Sequence and structural conservation in RNA ribose zippers, J. Mol. Biol., 320, 455-474, https://doi.org/10.1016/S0022-2836(02)00515-6.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J. C., Cannone, J. J., and Gutell, R. R. (2003) The lonepair triloop: a new motif in RNA structure, J. Mol. Biol., 325, 65-83, https://doi.org/10.1016/S0022-2836(02)01106-3.

    Article  CAS  PubMed  Google Scholar 

  36. Gagnon, M. G., and Steinberg, S. V. (2010) The adenosine wedge: A new structural motif in ribosomal RNA, RNA, 16, 375-381, https://doi.org/10.1261/rna.1550310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leontis, N. B., and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs, RNA, 7, 499-512, https://doi.org/10.1017/s1355838201002515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Torabi, S. F., Vaidya, A. T., Tycowski, K. T., DeGregorio, S. J., Wang, J., et al. (2021) RNA stabilization by a poly (A) tail 3′-end binding pocket and other modes of poly (A)-RNA interaction, Science, 371, eabe6523, https://doi.org/10.1126/science.abe6523.

    Article  CAS  PubMed  Google Scholar 

  39. Newby, M. I., and Greenbaum, N. L. (2002) Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine, Nat. Struct. Biol., 9, 958-965, https://doi.org/10.1038/nsb873.

    Article  CAS  PubMed  Google Scholar 

  40. Hamdani, H. Y., and Firdaus-Raih, M. (2019) Identification of structural motifs using networks of hydrogen-bonded base interactions in RNA crystallographic structures, Crystals, 9, 550, https://doi.org/10.3390/cryst9110550.

    Article  CAS  Google Scholar 

  41. Lescoute, A., and Westhof, E. (2006) The A-minor motifs in the decoding recognition process, Biochimie, 88, 993-999, https://doi.org/10.1016/j.biochi.2006.05.018.

    Article  CAS  PubMed  Google Scholar 

  42. Lescoute, A., and Westhof, E. (2006) The interaction networks of structured RNAs, Nucleic Acids Res., 34, 6587-6604, https://doi.org/10.1093/nar/gkl963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petrov, A. I., Zirbel, C. L., and Leontis, N. B. (2011) WebFR3D – a server for finding, aligning and analyzing recurrent RNA 3D motifs, Nucleic Acids Res., 39, W50-W55, https://doi.org/10.1093/nar/gkr249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheth, P., Cervantes-Cervantes, M., Nagula, A., Laing, C., and Wang, J. T. (2013) Novel features for identifying A-minors in three-dimensional RNA molecules, Computat. Biol. Chem., 47, 240-245, https://doi.org/10.1016/j.compbiolchem.2013.10.004.

    Article  CAS  Google Scholar 

  45. Laing, C., Jung, S., Iqbal, A., and Schlick, T. (2009) Tertiary motifs revealed in analyses of higher-order RNA junctions, J. Mol. Biol., 393, 67-82, https://doi.org/10.1016/j.jmb.2009.07.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., and Velankar, S. (2017) Protein Data Bank (PDB): the single global macromolecular structure archive, Protein Crystallogr., 1607, 627-641, https://doi.org/10.1007/978-1-4939-7000-1_26.

    Article  CAS  Google Scholar 

  47. Reinharz, V., Soulé, A., Westhof, E., Waldispühl, J., and Denise, A. (2018) Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families, Nucleic Acids Res., 46, 3841-3851, https://doi.org/10.1093/nar/gky197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Appasamy, S. D., Hamdani, H. Y., Ramlan, E. I., and Firdaus-Raih, M. (2016) InterRNA: a database of base interactions in RNA structures, Nucleic Acids Res., 44, D266-D271, https://doi.org/10.1093/nar/gkv1186.

    Article  CAS  PubMed  Google Scholar 

  49. Hamdani, H. Y., Appasamy, S. D., Willett, P., Artymiuk, P. J., and Firdaus-Raih, M. (2012) NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules, Nucleic Acids Res., 40, W35-W41, https://doi.org/10.1093/nar/gks513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Firdaus-Raih, M., Hamdani, H. Y., Nadzirin, N., Ramlan, E. I., Willett, P., and Artymiuk, P. J. (2014) COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures, Nucleic Acids Res., 42, W382-W388, https://doi.org/10.1093/nar/gku438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu, X. J., Bussemaker, H. J., and Olson, W. K. (2015) DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Res., 43, e142-e142, https://doi.org/10.1093/nar/gkv716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, H., Jossinet, F., Leontis, N., Chen, L., Westbrook, J., et al. (2003) Tools for the automatic identification and classification of RNA base pairs, Nucleic Acids Res., 31, 3450-3460, https://doi.org/10.1093/nar/gkg529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gendron, P., Lemieux, S., and Major, F. (2001) Quantitative analysis of nucleic acid three-dimensional structures, J. Mol. Biol., 308, 919-936, https://doi.org/10.1006/jmbi.2001.4626.

    Article  CAS  PubMed  Google Scholar 

  54. Lu, X. J., and Olson, W. K. (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures, Nat. Protoc., 3, 1213, https://doi.org/10.1038/nprot.2008.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shalybkova, A. A., Mikhailova, D. S., Kulakovskiy, I. V., Fakhranurova, L. I., and Baulin, E. F. (2021) Annotation of the local context of the RNA secondary structure improves the classification and prediction of A-minors, RNA, rna-078535, https://doi.org/10.1261/rna.078535.120.

    Article  PubMed  Google Scholar 

  56. Rázga, F., Koča, J., Šponer, J., and Leontis, N. B. (2005) Hinge-like motions in RNA kink-turns: the role of the second A-minor motif and nominally unpaired bases, Biophys. J., 88, 3466-3485, https://doi.org/10.1529/biophysj.104.054916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sponer, J., Bussi, G., Krepl, M., Banáš, P., Bottaro, S., et al. (2018) RNA structural dynamics as captured by molecular simulations: a comprehensive overview, Chem. Rev., 118, 4177-4338, https://doi.org/10.1021/acs.chemrev.7b00427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Laing, C., Wen, D., Wang, J. T., and Schlick, T. (2012) Predicting coaxial helical stacking in RNA junctions, Nucleic Acids Res., 40, 487-498, https://doi.org/10.1093/nar/gkr629.

    Article  CAS  PubMed  Google Scholar 

  59. Beššeová, I., Reblova, K., Leontis, N. B., and Šponer, J. (2010) Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome, Nucleic Acids Res., 38, 6247-6264, https://doi.org/10.1093/nar/gkq414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lescoute, A., and Westhof, E. (2005) Riboswitch structures: purine ligands replace tertiary contacts, Chem. Biol., 12, 10-13, https://doi.org/10.1016/j.chembiol.2005.01.002.

    Article  CAS  PubMed  Google Scholar 

  61. Baulin, E., Yacovlev, V., Khachko, D., Spirin, S., and Roytberg, M. (2016) URS DataBase: universe of RNA structures and their motifs, Database, 2016, baw085, https://doi.org/10.1093/database/baw085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calvin, K., and Li, H. (2008) RNA-splicing endonuclease structure and function, Cell. Mol. Life Sci., 65, 1176-1185, https://doi.org/10.1007/s00018-008-7393-y.

    Article  CAS  PubMed  Google Scholar 

  63. Ikawa, Y., Yoshimura, T., Hara, H., Shiraishi, H., and Inoue, T. (2002) Two conserved structural components, A‐rich bulge and P4 XJ6/7 base‐triples, in activating the group I ribozymes, Genes Cells, 7, 1205-1215, https://doi.org/10.1046/j.1365-2443.2002.00601.x.

    Article  CAS  PubMed  Google Scholar 

  64. Battle, D. J., and Doudna, J. A. (2002) Specificity of RNA–RNA helix recognition, Proc. Natl. Acad. Sci. USA, 99, 11676-11681, https://doi.org/10.1073/pnas.182221799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwalbe, H., Buck, J., Fürtig, B., Noeske, J., and Wöhnert, J. (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure, Angewandte Chemie Int. Edn., 46, 1212-1219, https://doi.org/10.1002/anie.200604163.

    Article  CAS  Google Scholar 

  66. Šponer, J. E., Leszczynski, J., Sychrovský, V., and Šponer, J. (2005) Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations, J. Phys. Chem. B, 109, 18680-18689, https://doi.org/10.1021/jp053379q.

    Article  CAS  PubMed  Google Scholar 

  67. Šponer, J. E., Reblova, K., Mokdad, A., Sychrovský, V., Leszczynski, J., and Šponer, J. (2007) Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view, J. Phys. Chem. B, 111, 9153-9164, https://doi.org/10.1021/jp0704261.

    Article  CAS  PubMed  Google Scholar 

  68. Costa, M., and Michel, F. (1995) Frequent use of the same tertiary motif by self‐folding RNAs, EMBO J., 14, 1276-1285, https://doi.org/10.1002/j.1460-2075.1995.tb07111.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, J. C., Gutell, R. R., and Russell, R. (2006) The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions, J. Mol. Biol., 360, 978-988, https://doi.org/10.1016/j.jmb.2006.05.066.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshizawa, S., Fourmy, D., and Puglisi, J. D. (1999) Recognition of the codon-anticodon helix by ribosomal RNA, Science, 285, 1722-1725, https://doi.org/10.1126/science.285.5434.1722.

    Article  CAS  PubMed  Google Scholar 

  71. Ogle, J. M., Brodersen, D. E., Clemons, W. M., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit, Science, 292, 897-902, https://doi.org/10.1126/science.1060612.

    Article  CAS  PubMed  Google Scholar 

  72. Ogle, J. M., and Ramakrishnan, V. (2005) Structural insights into translational fidelity, Annu. Rev. Biochem., 74, 129-177, https://doi.org/10.1146/annurev.biochem.74.061903.155440.

    Article  CAS  PubMed  Google Scholar 

  73. Gromadski, K. B., Daviter, T., and Rodnina, M. V. (2006) A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity, Mol. Cell, 21, 369-377, https://doi.org/10.1016/j.molcel.2005.12.018.

    Article  CAS  PubMed  Google Scholar 

  74. Prokhorova, I., Altman, R. B., Djumagulov, M., Shrestha, J. P., Urzhumtsev, A., et al. (2017) Aminoglycoside interactions and impacts on the eukaryotic ribosome, Proc. Natl. Acad. Sci. USA, 114, E10899-E10908, https://doi.org/10.1073/pnas.1715501114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Steitz, T. A., and Moore, P. B. (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme, Trends Biochem. Sci., 28, 411-418, https://doi.org/10.1016/S0968-0004(03)00169-5.

    Article  CAS  PubMed  Google Scholar 

  76. Noller, H. F. (2012) Evolution of protein synthesis from an RNA world, Cold Spring Harb. Perspect. Biol., 4, a003681, https://doi.org/10.1101/cshperspect.a003681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lancaster, L., and Noller, H. F. (2005) Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA, Mol. Cell, 20, 623-632, https://doi.org/10.1016/j.molcel.2005.10.006.

    Article  CAS  PubMed  Google Scholar 

  78. Steitz, T. A. (2008) A structural understanding of the dynamic ribosome machine, Nat. Rev., Mol. Cell Biol., 9, 242-253, https://doi.org/10.1038/nrm2352.

    Article  CAS  PubMed  Google Scholar 

  79. Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002) Structural insights into peptide bond formation, Proc. Natl. Acad. Sci. USA, 99, 11670-11675, https://doi.org/10.1073/pnas.172404099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Noller, H. F. (2005) RNA structure: reading the ribosome, Science, 309, 1508-1514, https://doi.org/10.1126/science.1111771.

    Article  CAS  PubMed  Google Scholar 

  81. Szymański, M., Barciszewska, M. Z., Erdmann, V. A., and Barciszewski, J. (2003) 5S rRNA: structure and interactions, Biochem. J., 371, 641-651, https://doi.org/10.1042/bj20020872.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mohan, S., and Noller, H. F. (2017) Recurring RNA structural motifs underlie the mechanics of L1 stalk movement, Nat. Commun., 8, 1-11, https://doi.org/10.1038/ncomms14285.

    Article  CAS  Google Scholar 

  83. Bou-Nader, C., and Zhang, J. (2020) Structural insights into RNA dimerization: Motifs, interfaces and functions, Molecules, 25, 2881, https://doi.org/10.3390/molecules25122881.

    Article  CAS  PubMed Central  Google Scholar 

  84. Leontis, N. B., and Westhof, E. (2003) Analysis of RNA motifs, Curr. Opin. Struct. Biol., 13, 300-308, https://doi.org/10.1016/S0959-440X(03)00076-9.

    Article  CAS  PubMed  Google Scholar 

  85. Frank, J., Gao, H., Sengupta, J., Gao, N., and Taylor, D. J. (2007) The process of mRNA–tRNA translocation, Proc. Natl. Acad. Sci. USA, 104, 19671-19678, https://doi.org/10.1073/pnas.0708517104.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Spirin, A. S. (1968) How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome, Curr. Mod. Biol., 2, 115-127, https://doi.org/10.1016/0303-2647(68)90017-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene F. Baulin.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies involving human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baulin, E.F. Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure. Biochemistry Moscow 86, 952–961 (2021). https://doi.org/10.1134/S000629792108006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792108006X

Keywords

Navigation