Skip to main content
Log in

Impact of High-Sucrose Diet on the mRNA Levels for Elongases and Desaturases and Estimated Protein Activity in Rat Adipose Tissue

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Fatty acids (FAs) present in the adipose tissue (AT) can be modified by elongases and desaturases. These enzymes are regulated by different factors including nutrients. The aim of the study was to evaluate the impact of high-sucrose diet (HSD; 68% sucrose) on the levels of mRNAs for elongases (Elovl2, Elovl5, Elovl6) and desaturases (Fads1, Fads2, Scd) and on the activity of the corresponding proteins in the rat AT. Male Wistar rats were randomized into two study groups: fed with a HSD and with a standard diet (ST). The mRNA levels were determined by a semi-quantitative reverse transcription-PCR. FA composition was analyzed by gas chromatography, and FA ratios were used to estimate the activity of the enzymes. In the HSD rats, the levels of Elovl5, Elovl6, Fads1, and Scd mRNAs were higher, while the level of Fads2 mRNA was lower than in the ST group. Higher levels of Elovl5 and Elovl6 mRNAs corresponded to higher relative activities of these enzymes, while downregulation of the Fads2 mRNA was associated with the lower activity of this desaturase. In contrast, an increase in the level of Scd mRNA was accompanied by a decrease in the enzyme activity. Less monounsaturated FAs were detected in the AT of HSD rats than in the ST group. The composition of individual FAs differed between the groups. This study supports the notion that the regulation of mRNA levels and activity of both elongases and desaturases play an important role in managing the AT lipid composition in response to changes in the dietary status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AT:

adipose tissue

ChREBP:

carbohydrate-responsive element-binding protein

Elovl:

elongase

eWAT:

epididymal white adipose tissue

ER:

endoplasmic reticulum

FA:

fatty acid

FADS1:

fatty acid desaturase 1

FADS2:

fatty acid desaturase 2

HSD:

high-sucrose diet

LXR:

liver X receptor

MUFA:

monounsaturated fatty acid

PUFA:

polyunsaturated fatty acid

SAT:

saturated fatty acid

SCD:

stearoyl-CoA desaturase

SREBP-1c:

sterol regulatory element-binding protein 1c

TG:

triacylglycerol

UNSAT:

unsaturated fatty acid

References

  1. Jurešić, G. Č., Percan, K., and Broznić, D. (2016) Effect of dietary fatty acid variation on mice adipose tissue lipid content and phospholipid composition, Croat. J. Food Technol. Biotechnol. Nutr., 11, 128-137.

    Google Scholar 

  2. Beylot, M. (2007) Metabolism of white adipose tissue, in Adipose Tissue And Adipokines In Health And Disease (Fantuzzi, G., and Mazzone, T., ed.) Totowa, pp. 21-35, https://doi.org/10.1007/978-1-59745-370-7_2.

  3. Kunešová, M., Hlavatý, P., Tvrzická, E., Staňková, B., Kalousková, P., et al. (2012) Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study, Physiol. Res., 61, 597-607, https://doi.org/10.33549/physiolres.932414.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, Y., Botolin, D., Xu, J., Christian, B., Mitchell, E., et al. (2006) Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity, J. Lipid Res., 47, 2028-2041, https://doi.org/10.1194/jlr.M600177-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guillou, H., Zadravec, D., Martin, P. G. P., and Jacobsson, A. (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice, Prog. Lipid Res., 49, 186-199, https://doi.org/10.1016/j.plipres.2009.12.002.

    Article  CAS  PubMed  Google Scholar 

  6. Kihara, A. (2012) Very long-chain fatty acids: elongation, physiology and related disorders, J. Biochem., 152, 387-395, https://doi.org/10.1093/jb/mvs105.

    Article  CAS  PubMed  Google Scholar 

  7. Moon, Y.-A., Hammer, R. E., and Horton, J. D. (2009) Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice, J. Lipid Res., 50, 412-423, https://doi.org/10.1194/jlr.M800383-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tripathy, S., Lytle, K. A., Stevens, R. D., Bain, J. R., Newgard, C. B., et al. (2014) Fatty acid elongase-5 (Elovl5) regulates hepatic triglyceride catabolism in obese C57BL/6J mice, J. Lipid Res., 55, 1448-1464, https://doi.org/10.1194/jlr.M050062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J. Y., Kothapalli, K. S. D., and Brenna, J. T. (2016) Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis, Curr. Opin. Clin. Nutr. Metab. Care, 19, 103-110, https://doi.org/10.1097/MCO.0000000000000254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. ALJohani, A. M., Syed, D. M., and Ntambi, J. M. (2017) Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism, Trends Endocrinol. Metab., 28, 831-842, https://doi.org/10.1016/j.tem.2017.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paton, C. M., and Ntambi, J. M. (2009) Biochemical and physiological function of stearoyl-CoA desaturase, Am. J. Physiol. Endocrinol. Metab., 297, 28-37, https://doi.org/10.1152/ajpendo.90897.2008.

    Article  CAS  Google Scholar 

  12. Dentin, R., Denechaud, P. D., Benhamed, F., Girard, J., and Postic, C. (2006) Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP, J. Nutr., 136, 1145-1149, https://doi.org/10.1093/jn/136.5.1145.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, L., Robinson, L. N., and Towle, H. C. (2006) ChREBP·Mlx is the principal mediator of glucose-induced gene expression in the liver, J. Biol. Chem., 281, 28721-28730, https://doi.org/10.1074/jbc.M601576200.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y., Botolin, D., Christian, B., Busik, J., Xu, J., and Jump, D. B. (2005) Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases, J. Lipid Res., 46, 706-715, https://doi.org/10.1194/jlr.M400335-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitro, N., Mak, P. A., Vargas, L., Godio, C., Hampton, E., et al. (2007) The nuclear receptor LXR is a glucose sensor, Nature, 445, 219-223, https://doi.org/10.1038/nature05449.

    Article  CAS  PubMed  Google Scholar 

  16. Qin, Y., Dalen, K. T., Gustafsson, J. Å., and Nebb, H. I. (2009) Regulation of hepatic fatty acid elongase 5 by LXRα-SREBP-1c, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1791, 140-147, https://doi.org/10.1016/j.bbalip.2008.12.003.

    Article  CAS  Google Scholar 

  17. Jazurek, M., Dobrzyń, P., and Dobrzyń, A. (2008) Regulation of gene expression by long-chain fatty acids, Postepy Biochem., 54, 242-250.

    CAS  PubMed  Google Scholar 

  18. Ntambi, J. M. (1992) Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver, J. Biol. Chem., 267, 10925-10930, https://doi.org/10.1016/S0021-9258(19)50107-7.

    Article  CAS  PubMed  Google Scholar 

  19. Folch, J., Lees, M., and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem., 226, 497-509.

    Article  CAS  Google Scholar 

  20. Metcalfe, L. D., and Schmitz, A. A. (1961) The rapid preparation of fatty acid esters for gas chromatographic analysis, Anal. Chem., 33, 363-364, https://doi.org/10.1021/ac60171a016.

    Article  CAS  Google Scholar 

  21. Chaves Das Neves, H. J., and Vasconcelos, A. M. (1987) Capillary gas chromatography of amino acids, including asparagine and glutamine: sensitive gas chromatographic-mass spectrometric and selected ion monitoring gas chromatographic-mass spectrometric detection of the N,O(S)-tert.-butyldimethylsilyl derivativ, J. Chromatogr., 392, 249-258.

    Article  CAS  Google Scholar 

  22. Li, Y., and Watkins, B. A. (1998) Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E 2 biosynthesis in rats fed n-6 or n-3 fatty acids, Lipids, 33, 417-425, https://doi.org/10.1007/s11745-998-0223-9.

    Article  CAS  PubMed  Google Scholar 

  23. Cedernaes, J., Alsiö, J., Västermark, Å., Risérus, U., and Schiöth, H. B. (2013) Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet, Lipids Health Dis., 12, 2, https://doi.org/10.1186/1476-511X-12-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harding, S. V., Bateman, K. P., Kennedy, B. P., Rideout, T. C., and Jones, P. J. H. (2015) Desaturation index versus isotopically measured de novo lipogenesis as an indicator of acute systemic lipogenesis, BMC Res. Notes, 8, 49, https://doi.org/10.1186/s13104-015-1016-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gastaldelli, A., Gaggini, M., and DeFronzo, R. A. (2017) Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study, Diabetes, 66, 815-822, https://doi.org/10.2337/db16-1167.

    Article  CAS  PubMed  Google Scholar 

  26. Govers, R. (2014) Molecular mechanisms of GLUT4 regulation in adipocytes, Diabetes Metab., 40, 400-410, https://doi.org/10.1016/J.DIABET.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  27. Beaven, S. W. W., Matveyenko, A., Wroblewski, K., Chao, L., Wilpitz, D., et al. (2013) Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance, Cell Metab., 18, 106-117, https://doi.org/10.1016/j.cmet.2013.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herman, M. A., Peroni, O. D., Villoria, J., Schön, M. R., Abumrad, N. A., et al. (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism, Nature, 484, 333-338, https://doi.org/10.1038/nature10986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hua, Z. G., Xiong, L. J., Yan, C., Wei, D. H., Ying Pai, Z., et al. (2016) Glucose and insulin stimulate lipogenesis in porcine adipocytes: dissimilar and identical regulation pathway for key transcription factors, Mol. Cells, 39, 797-806, https://doi.org/10.14348/molcells.2016.0144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nuotio-Antar, A. M., Poungvarin, N., Li, M., Schupp, M., Mohammad, M., et al. (2015) FABP4-Cre mediated expression of constitutively active ChREBP protects against obesity, fatty liver, and insulin resistance, Endocrinology, 156, 4020-4032, https://doi.org/10.1210/en.2015-1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, Z., Xiaoli, A. M., and Yang, F. (2018) Regulation and metabolic significance of de novo lipogenesis in adipose tissues, Nutrients, 10, 1383, https://doi.org/10.3390/nu10101383.

    Article  CAS  PubMed Central  Google Scholar 

  32. Tan, Z., Du, J., Shen, L., Liu, C., Ma, J., et al. (2017) MiR-199a-3p affects adipocytes differentiation and fatty acid composition through targeting SCD, Biochem. Biophys. Res. Commun., 492, 82-88, https://doi.org/10.1016/j.bbrc.2017.08.030.

    Article  CAS  PubMed  Google Scholar 

  33. De Castro, J.P.W., Blandino-Rosano, M., and Bernal-Mizrachi, E. (2018) The microRNA 199a family is regulated by glucose levels in pancreatic beta cells, Diabetes, 67, 2170, https://doi.org/10.2337/db18-2170-P.

    Article  Google Scholar 

  34. Li, Y. B., Wu, Q., Liu, J., Fan, Y. Z., Yu, K. F., and Cai, Y. (2017) miR-199a-3p is involved in the pathogenesis and progression of diabetic neuropathy through downregulation of SerpinE2, Mol. Med. Rep., 16, 2417-2424, https://doi.org/10.3892/mmr.2017.6874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flowers, M. T., Ade, L., Strable, M. S., and Ntambi, J. M. (2012) Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity, J. Lipid Res., 53, 1646-1653, https://doi.org/10.1194/jlr.M027508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dragos, S. M., Bergeron, K. F., Desmarais, F., Suitor, K., Wright, D. C., et al. (2017) Reduced SCD1 activity alters markers of fatty acid reesterification, glyceroneogenesis, and lipolysis in murine white adipose tissue and 3T3-L1 adipocytes, Am. J. Physiol. Cell Physiol., 313, 295-304, https://doi.org/10.1152/ajpcell.00097.2017.

    Article  Google Scholar 

  37. Soriguer, F., Moreno, F., Rojo-Martínez, G., García-Fuentes, E., Tinahones, F., et al. (2003) Monounsaturated n-9 fatty acids and adipocyte lipolysis in rats, Br. J. Nutr., 90, 1015-1022, https://doi.org/10.1079/BJN2003993.

    Article  CAS  PubMed  Google Scholar 

  38. Cruz, M. M., Lopes, A. B., Crisma, A. R., De Sá, R. C. C., Kuwabara, W. M. T., et al. (2018) Palmitoleic acid (16 : 1 n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes, Lipids Heal. Dis., 17, 55, https://doi.org/10.1186/s12944-018-0710-z.

    Article  CAS  Google Scholar 

  39. Ntambi, J. M., Miyazaki, M., Stoehr, J. P., Lan, H., Kendziorski, C. M., et al. (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity, Proc. Natl. Acad. Sci. USA, 99, 11482-11486, https://doi.org/10.1073/pnas.132384699.

    Article  CAS  PubMed  Google Scholar 

  40. Tripathy, S., Torres-Gonzalez, M., and Jump, D. B. (2010) Elevated hepatic fatty acid elongase-5 activity corrects dietary fat-induced hyperglycemia in obese BL/6J mice, J. Lipid Res., 51, 2642-2654, https://doi.org/10.1194/jlr.M006080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steffensen, K. R., and Gustafsson, J. A. (2004) Putative metabolic effects of the liver X receptor (LXR), Diabetes, 53, Suppl. 1, 36-42, https://doi.org/10.2337/diabetes.53.2007.s36.

    Article  Google Scholar 

  42. Drąg, J., Goździalska, A., Knapik-Czajka, M., Gawędzka, A., Gawlik, K., and Jaśkiewicz, J. (2017) Effect of high carbohydrate diet on elongase and desaturase activity and accompanying gene expression in rat’s liver, Genes Nutr., 12, 2, https://doi.org/10.1186/s12263-017-0551-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanazawa, M., Xue, C. Y., Kageyama, H., Suzuki, E., Ito, R., et al. (2003) Effects of a high-sucrose diet on body weight, plasma triglycerides, and stress tolerance, Nutr. Rev., 61, 27-33, https://doi.org/10.1301/nr.2003.may.s27-s33.

    Article  Google Scholar 

  44. Xue, C. Y., Kageyama, H., Kashiba, M., Kobayashi, A., Osaka, T., et al. (2001) Different origin of hypertriglyceridemia induced by a high-fat and a high-sucrose diet in ventromedial hypothalamic-lesioned obese and normal rats, Int. J. Obes., 25, 434-438, https://doi.org/10.1038/sj.ijo.0801548.

    Article  CAS  Google Scholar 

  45. Huang, W., Dedousis, N., and O’Doherty, R. M. (2007) Hepatic steatosis and plasma dyslipidemia induced by a high-sucrose diet are corrected by an acute leptin infusion, J. Appl. Physiol., 102, 2260-2265, https://doi.org/10.1152/japplphysiol.01449.2006.

    Article  CAS  PubMed  Google Scholar 

  46. Feng, R., Du, S., Chen, Y., Zheng, S., Zhang, W., et al. (2015) High carbohydrate intake from starchy foods is positively associated with metabolic disorders: a Cohort Study from a Chinese population, Sci. Rep., 5, 16919, https://doi.org/10.1038/srep16919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Katarzyna Wadowska and Anna Cichon for their excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

J. D. and J. J. conceived and designed the experiment. J. D., J. G. A., and M. K. C. performed the experiment. JD performed animal experiments. J. D., M. K. C., and A. G. analyzed the data. J. D., and M. K. C. wrote the paper. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jagoda Drag.

Ethics declarations

The authors declare no conflict of interest. All procedures performed in animals were in accordance with the ethical standards of the institution where the studies were conducted (Animal Research Committee, Jagiellonian University Ethic Committee, 19.11.2009, no. 116/2009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drag, J., Knapik-Czajka, M., Gawedzka, A. et al. Impact of High-Sucrose Diet on the mRNA Levels for Elongases and Desaturases and Estimated Protein Activity in Rat Adipose Tissue. Biochemistry Moscow 86, 525–532 (2021). https://doi.org/10.1134/S0006297921050011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921050011

Keywords

Navigation