Skip to main content
Log in

Mitoptosis, Twenty Years After

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In 1999 V. P. Skulachev proposed the term “mitoptosis” to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of “mitoptotic body” surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme.

Similar content being viewed by others

Abbreviations

DNP:

2,4-dinitrophenol

FCCP:

p-(trifluoromethoxy) phenylhydrazone carbonyl cyanide

HSC:

hematopoietic stem cells

LPS:

lipopolysaccharide of bacterial wall

mtDNA:

mitochondrial DNA

NGF:

nerve growth factor

ROS:

reactive oxygen species

TNF:

tumor necrosis factor

References

  1. Skulachev, V. P. (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms, Mol. Aspects Med., 20, 139-184, https://doi.org/10.1016/s0098-2997(99)00008-4.

    Article  CAS  PubMed  Google Scholar 

  2. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

    CAS  Google Scholar 

  3. Skulachev, V. P. (2000) Mitochondria in the programmed death phenomena; a principle of biology: “it is better to die than to be wrong”, IUBMB Life, 49, 365-373, https://doi.org/10.1080/152165400410209.

    Article  CAS  PubMed  Google Scholar 

  4. Skulachev, V. P. (2001) The programmed death phenomena, aging, and the samurai law of biology, Exp. Gerontol., 36, 995-1024, https://doi.org/10.1016/s0531-5565(01)00109-7.

    Article  CAS  PubMed  Google Scholar 

  5. Von Ahsen, O., Renken, C., Perkins, G., Kluck, R. M., Bossy-Wetzel, E., and Newmeyer, D.D. (2000) Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release, J. Cell Biol., 150, 1027-1030, https://doi.org/10.1083/jcb.150.5.1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia Fernandez, M., Troiano, L., Moretti, L., Nasi, M., Pinti, M., Salvioli, S., et al. (2002) Early changes in intramitochondrial cardiolipin distribution during apoptosis, Cell Growth Differ., 13, 449-455.

    PubMed  Google Scholar 

  7. Bota, D. A., Ngo, J. K., and Davies, K. J. A. (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death, Free Radic. Biol. Med., 38, 665-677, https://doi.org/10.1016/j.freeradbiomed.2004.11.017.

    Article  CAS  PubMed  Google Scholar 

  8. Rose, G., Passarino, G., Franceschi, C., and De Benedictis, G. (2002) The variability of the mitochondrial genome in human aging: a key for life and death? Int. J. Biochem. Cell Biol., 34, 1449-1460, https://doi.org/10.1016/s1357-2725(02)00042-0.

    Article  CAS  PubMed  Google Scholar 

  9. Tinari, A., Garofalo, T., Sorice, M., Esposti, M. D., and Malorni, W. (2007) Mitoptosis: different pathways for mitochondrial execution, Autophagy, 3, 282-284, https://doi.org/10.4161/auto.3924.

    Article  PubMed  Google Scholar 

  10. Géminard, C., de Gassart, A., and Vidal, M. (2002) Reticulocyte maturation: mitoptosis and exosome release, Biocell, 26, 205-215.

    Article  Google Scholar 

  11. Lyamzaev, K. G., Pletjushkina, O. Y., Saprunova, V. B., Bakeeva, L. E., Chernyak, B. V., and Skulachev, V. P. (2004) Selective elimination of mitochondria from living cells induced by inhibitors of bioenergetic functions, Biochem. Soc. Trans., 32, 1070-1071, https://doi.org/10.1042/BST0321070.

    Article  CAS  PubMed  Google Scholar 

  12. Lyamzaev, K. G., Nepryakhina, O. K., Saprunova, V. B., Bakeeva, L. E., Pletjushkina, O. Y., et al. (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell, Biochim. Biophys. Acta, 1777, 817-825, https://doi.org/10.1016/j.bbabio.2008.03.027.

    Article  CAS  PubMed  Google Scholar 

  13. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., et al. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 256-257, 341-358, https://doi.org/10.1023/b:mcbi.0000009880.94044.49.

    Article  PubMed  Google Scholar 

  14. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., et al. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518-524, https://doi.org/10.1016/j.bbabio.2006.03.018.

    Article  CAS  PubMed  Google Scholar 

  15. Arnoult, D., Rismanchi, N., Grodet, A., Roberts, R.G., Seeburg, D.P., et al. (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death, Curr. Biol., 15, 2112-2118, https://doi.org/10.1016/j.cub.2005.10.041.

    Article  CAS  PubMed  Google Scholar 

  16. Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S. O., Masuda, K., et al. (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice, Nat. Cell Biol., 11, 958-966, https://doi.org/10.1038/ncb1907.

    Article  CAS  PubMed  Google Scholar 

  17. Burman, J. L., Pickles, S., Wang, C., Sekine, S., Vargas, J. N. S., et al. (2017) Mitochondrial fission facilitates the selective mitophagy of protein aggregates, J. Cell. Biol., 216, 3231-3247, https://doi.org/10.1083/jcb.201612106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quirós, P. M., Langer, T., and López-Otín, C. (2015) New roles for mitochondrial proteases in health, ageing and disease, Nat. Rev. Mol. Cell Biol., 16, 345-359, https://doi.org/10.1038/nrm3984.

    Article  CAS  PubMed  Google Scholar 

  19. Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology, Nat. Cell. Biol., 20, 1013-1022, https://doi.org/10.1038/s41556-018-0176-2.

    Article  CAS  PubMed  Google Scholar 

  20. Bock, F. J., and Tait, S. W. G. (2020) Mitochondria as multifaceted regulators of cell death, Nat. Rev. Mol. Cell Biol., 21, 85-100, https://doi.org/10.1038/s41580-019-0173-8.

    Article  CAS  PubMed  Google Scholar 

  21. Tolstonog, G. V., Belichenko-Weitzmann, I. V., Lu, J.-P., Hartig, R., Shoeman, R. L., Traub, U., et al. (2005) Spontaneously immortalized mouse embryo fibroblasts: growth behavior of wild-type and vimentin-deficient cells in relation to mitochondrial structure and activity, DNA Cell Biol., 24, 680-709, https://doi.org/10.1089/dna.2005.24.680.

    Article  CAS  PubMed  Google Scholar 

  22. Kopito, R. R. (2000) Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol., 10, 524-530, https://doi.org/10.1016/s0962-8924(00)01852-3.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria, Cell, 93, 1147-1158, https://doi.org/10.1016/s0092-8674(00)81459-2.

    Article  CAS  PubMed  Google Scholar 

  24. Hallmann, A., Milczarek, R., Lipiński, M., Kossowska, E., Spodnik, J. H., et al. (2004) Fast perinuclear clustering of mitochondria in oxidatively stressed human choriocarcinoma cells, Folia Morphol., 63, 407-412.

    Google Scholar 

  25. Agarwal, S., and Ganesh, S. (2020) Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress, J. Cell. Sci., https://doi.org/10.1242/jcs.245589.

  26. Kim, S., Kim, H.-Y., Lee, S., Kim, S. W., Sohn, S., Kim, K., et al. (2007) Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners, J. Virol., 81, 1714-1726, https://doi.org/10.1128/JVI.01863-06.

    Article  CAS  PubMed  Google Scholar 

  27. Lyamzaev, K. G., Tokarchuk, A. V., Panteleeva, A. A., Mulkidjanian, A. Y., Skulachev, V. P., and Chernyak, B. V. (2018) Induction of autophagy by depolarization of mitochondria, Autophagy, 14, 921-924, https://doi.org/10.1080/15548627.2018.1436937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, H.-J., Patel, S., and Lee, S.-J. (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates, J. Neurosci., 25, 6016-6024, https://doi.org/10.1523/JNEUROSCI.0692-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, H.-J., Cho, E.-D., Lee, K.W., Kim, J.-H., Cho, S.-G., and Lee, S.-J. (2013) Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein, Exp. Mol. Med., 45, 22, https://doi.org/10.1038/emm.2013.45.

    Article  CAS  Google Scholar 

  30. Izyumov, D. S., Avetisyan, A. V., Pletjushkina, O. Y., Sakharov, D. V., Wirtz, K. W., et al. (2004) “Wages of fear”: transient threefold decrease in intracellular ATP level imposes apoptosis, Biochim. Biophys. Acta, 1658, 141-147, https://doi.org/10.1016/j.bbabio.2004.05.007.

    Article  CAS  PubMed  Google Scholar 

  31. Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., et al. (2010) Regulation of mammalian autophagy in physiology and pathophysiology, Physiol. Rev., 90, 1383-1435, https://doi.org/10.1152/physrev.00030.2009.

    Article  CAS  PubMed  Google Scholar 

  32. Melentijevic, I., Toth, M. L., Arnold, M. L., Guasp, R. J., Harinath, G., et al. (2017) C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress, Nature, 542, 367-371, https://doi.org/10.1038/nature21362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bisharyan, Y., and Clark, T. G. (2011) Calcium-dependent mitochondrial extrusion in ciliated protozoa, Mitochondrion, 11, 909-918, https://doi.org/10.1016/j.mito.2011.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fletcher, G. C., Xue, L., Passingham, S. K., and Tolkovsky, A. M. (2000) Death commitment point is advanced by axotomy in sympathetic neurons, J. Cell. Biol., 150, 741-754, https://doi.org/10.1083/jcb.150.4.741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis, Curr. Biol., 11, 361-365, https://doi.org/10.1016/s0960-9822(01)00100-2.

    Article  CAS  PubMed  Google Scholar 

  36. Tolkovsky, A. M., Xue, L., Fletcher, G. C., and Borutaite, V. (2002) Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie, 84, 233-240, https://doi.org/10.1016/s0300-9084(02)01371-8.

    Article  CAS  PubMed  Google Scholar 

  37. Chao, H., Lin, C., Zuo, Q., Liu, Y., Xiao, M., et al. (2019) Cardiolipin-dependent mitophagy guides outcome after traumatic brain injury, J. Neurosci., 39, 1930-1943, https://doi.org/10.1523/JNEUROSCI.3415-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu, C. T., Ji, J., Dagda, R. K., Jiang, J. F., Tyurina, Y. Y., et al. (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nat. Cell. Biol., 15, 1197-1205, https://doi.org/10.1038/ncb2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, C., Hu, Z., Zou, Y., Xiang, M., Jiang, Y., et al. (2017) The post-therapeutic effect of rapamycin in mild traumatic brain-injured rats ensuing in the upregulation of autophagy and mitophagy, Cell. Biol. Int., 41, 1039-1047, https://doi.org/10.1002/cbin.10820.

    Article  CAS  PubMed  Google Scholar 

  40. Lou, G., Palikaras, K., Lautrup, S., Scheibye-Knudsen, M., Tavernarakis, N., and Fang, E. F. (2020) Mitophagy and neuroprotection, Trends Mol. Med., 26, 8-20, https://doi.org/10.1016/j.molmed.2019.07.002.

    Article  CAS  PubMed  Google Scholar 

  41. Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., and Mandelkow, E. (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease, J. Cell. Biol., 143, 777-794, https://doi.org/10.1083/jcb.143.3.777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lood, C., Blanco, L. P., Purmalek, M. M., Carmona-Rivera, C., De Ravin, S. S., et al. (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease, Nat. Med., 22, 146-153, https://doi.org/10.1038/nm.4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakajima, A., Kurihara, H., Yagita, H., Okumura, K., and Nakano, H. (2008) Mitochondrial extrusion through the cytoplasmic vacuoles during cell death, J. Biol. Chem., 283, 24128-24135, https://doi.org/10.1074/jbc.M802996200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Unuma, K., Aki, T., Matsuda, S., Funakoshi, T., Yoshida, K.-I., and Uemura, K. (2013) Elimination and active extrusion of liver mitochondrial proteins during lipopolysaccharide administration in rat, Hepatol. Res., 43, 526-534, https://doi.org/10.1111/j.1872-034X.2012.01084.x.

    Article  CAS  PubMed  Google Scholar 

  45. Unuma, K., Aki, T., Funakoshi, T., Hashimoto, K., and Uemura, K. (2015) Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: involvement of autophagy, Autophagy, 11, 1520-1536, https://doi.org/10.1080/15548627.2015.1063765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouasti, S., Matarrese, P., Paddon, R., Khosravi-Far, R., Sorice, M., et al. (2007) Death receptor ligation triggers membrane scrambling between Golgi and mitochondria, Cell Death Differ., 14, 453-461, https://doi.org/10.1038/sj.cdd.4402043.

    Article  CAS  PubMed  Google Scholar 

  47. Ingelsson, B., Söderberg, D., Strid, T., Söderberg, A., Bergh, A.-C., et al. (2018) Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C, Proc. Natl. Acad. Sci. USA, 115, 478-487, https://doi.org/10.1073/pnas.1711950115.

    Article  CAS  Google Scholar 

  48. De Paoli, S. H., Tegegn, T. Z., Elhelu, O. K., Strader, M. B., Patel, M., et al. (2018) Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome, Cell Mol. Life Sci., 75, 3781-3801, https://doi.org/10.1007/s00018-018-2771-6.

    Article  CAS  PubMed  Google Scholar 

  49. Boudreau, L. H., Duchez, A.-C., Cloutier, N., Soulet, D., Martin, N., et al. (2014) Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation, Blood, 124, 2173-2183, https://doi.org/10.1182/blood-2014-05-573543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Linge, P., Fortin, P. R., Lood, C., Bengtsson, A. A., and Boilard, E. (2018) The non-haemostatic role of platelets in systemic lupus erythematosus, Nat. Rev. Rheumatol., 14, 195-213, https://doi.org/10.1038/nrrheum.2018.38.

    Article  CAS  PubMed  Google Scholar 

  51. Puhm, F., Afonyushkin, T., Resch, U., Obermayer, G., Rohde, M., et al. (2019) Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells, Circ. Res., 125, 43-52, https://doi.org/10.1161/CIRCRESAHA.118.314601.

    Article  CAS  PubMed  Google Scholar 

  52. Baruah, J., and Wary, K. K. (2019) Exosomes in the regulation of vascular endothelial cell regeneration, Front. Cell Dev. Biol., 7, 353, https://doi.org/10.3389/fcell.2019.00353.

    Article  PubMed  Google Scholar 

  53. Zhang, B., Asadi, S., Weng, Z., Sismanopoulos, N., and Theoharides, T. C. (2012) Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions, PLoS One, 7, e49767, https://doi.org/10.1371/journal.pone.0049767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Torralba, D., Baixauli, F., Villarroya-Beltri, C., Fernández-Delgado, I., Latorre-Pellicer, A., et al. (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts, Nat. Commun., 9, 2658, https://doi.org/10.1038/s41467-018-05077-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Torralba, D., Baixauli, F., and Sánchez-Madrid, F. (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer, Front. Cell Dev. Biol., 4, 107, https://doi.org/10.3389/fcell.2016.00107.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yousefi, S., Simon, D., Stojkov, D., Karsonova, A., Karaulov, A., and Simon, H.-U. (2020) In vivo evidence for extracellular DNA trap formation, Cell Death Dis, 11, 300, https://doi.org/10.1038/s41419-020-2497-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kambara, H., Liu, F., Zhang, X., Liu, P., Bajrami, B., et al. (2018) Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death, Cell Rep., 22, 2924-2936, https://doi.org/10.1016/j.celrep.2018.02.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vorobjeva, N., Galkin, I., Pletjushkina, O., Golyshev, S., Zinovkin, R., et al. (2020) Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils, Biochim. Biophys. Acta Mol. Basis Dis., 1866, 165664, https://doi.org/10.1016/j.bbadis.2020.165664.

    Article  CAS  PubMed  Google Scholar 

  59. Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., et al. (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nat. Med., 13, 463-469, https://doi.org/10.1038/nm1565.

    Article  CAS  PubMed  Google Scholar 

  60. Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N. V., et al. (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo, Nat. Med., 18, 1386-1393, https://doi.org/10.1038/nm.2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yousefi, S., Gold, J. A., Andina, N., Lee, J. J., Kelly, A. M., et al. (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense, Nat. Med., 14, 949-953, https://doi.org/10.1038/nm.1855.

    Article  CAS  PubMed  Google Scholar 

  62. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I., and Simon, H. U. (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ., 16, 1438-1444, https://doi.org/10.1038/cdd.2009.96.

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka, K. (2020) The PINK1-parkin axis: an overview, Neurosci. Res., https://doi.org/10.1016/j.neures.2020.01.006.

  64. Liu, L., Sakakibara, K., Chen, Q., and Okamoto, K. (2014) Receptor-mediated mitophagy in yeast and mammalian systems, Cell Res., 24, 787-795, https://doi.org/10.1038/cr.2014.75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Simpson, C. F., and Kling, J. M. (1968) The mechanism of mitochondrial extrusion from phenylhydrazine-induced reticulocytes in the circulating blood, J. Cell. Biol., 36, 103-109.

    Article  Google Scholar 

  66. Ney, P. A. (2015) Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX, Biochim. Biophys. Acta, 1853, 2775-2783, https://doi.org/10.1016/j.bbamcr.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  67. Marinković, M., Šprung, M., and Novak, I. (2020) Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery, Autophagy, 1-12, https://doi.org/10.1080/15548627.2020.1755120.

  68. Aerbajinai, W., Giattina, M., Lee, Y. T., Raffeld, M., and Miller, J. L. (2003) The roapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation, Blood, 102, 712-717, https://doi.org/10.1182/blood-2002-11-3324.

    Article  CAS  PubMed  Google Scholar 

  69. Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., et al. (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation, Proc. Natl. Acad. Sci. USA, 104, 19500-19505, https://doi.org/10.1073/pnas.0708818104.

    Article  PubMed  Google Scholar 

  70. Kundu, M., Lindsten, T., Yang, C.-Y., Wu, J., Zhao, F., et al. (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation, Blood, 112, 1493-1502, https://doi.org/10.1182/blood-2008-02-137398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wong, P.-M., Puente, C., Ganley, I. G., and Jiang, X. (2013) The ULK1 complex: sensing nutrient signals for autophagy activation, Autophagy, 9, 124-137, https://doi.org/10.4161/auto.23323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Honda, S., Arakawa, S., Nishida, Y., Yamaguchi, H., Ishii, E., and Shimizu, S. (2014) Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes, Nat. Commun., 5, 4004, https://doi.org/10.1038/ncomms5004.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, J., Randall, M. S., Loyd, M. R., Dorsey, F. C., Kundu, M., et al. (2009) Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation, Blood, 114, 157-164, https://doi.org/10.1182/blood-2008-04-151639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, J., Fang, Y., Yan, L., Yuan, N., Zhang, S., Xu, L., et al. (2016) Erythroleukemia cells acquire an alternative mitophagy capability, Sci. Rep., 6, 24641, https://doi.org/10.1038/srep24641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hammerling, B. C., Shires, S. E., Leon, L. J., Cortez, M. Q., and Gustafsson, Å. B. (2020) Isolation of Rab5-positive endosomes reveals a new mitochondrial degradation pathway utilized by BNIP3 and Parkin, Small GTPases, 11, 69-76, https://doi.org/10.1080/21541248.2017.1342749.

    Article  CAS  PubMed  Google Scholar 

  76. Laude-Taupin, A., Jia, J., Mudd, M., and Deretic, V. (2017) Autophagy’s secret life: secretion instead of degradation, Essays Biochem., 61, 637-647, https://doi.org/10.1042/EBC20170024.

    Article  Google Scholar 

  77. Griffiths, R. E., Kupzig, S., Cogan, N., Mankelow, T. J., Betin, V. M. S., et al. (2012) Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis, Blood, 119, 6296-6306, https://doi.org/10.1182/blood-2011-09-376475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schmidt, J., Prehn, S., and Rapoport, S. M. (1985) Proteolysis during in vitro-maturation of rabbit reticulocytes, Biomed. Biochim. Acta, 44, 1429-1434.

    CAS  PubMed  Google Scholar 

  79. Rapoport, S. M., and Schewe, T. (1986) The maturational breakdown of mitochondria in reticulocytes, Biochim. Biophys. Acta, 864, 471-495, https://doi.org/10.1016/0304-4157(86)90006-7.

    Article  CAS  PubMed  Google Scholar 

  80. Ahlqvist, K. J., Leoncini, S., Pecorelli, A., Wortmann, S. B., Ahola, S., et al. (2015) MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction, Nat. Commun., 6, 6494, https://doi.org/10.1038/ncomms7494.

    Article  CAS  PubMed  Google Scholar 

  81. Brennan, L. A., McGreal-Estrada, R., Logan, C. M., Cvekl, A., Menko, A. S., and Kantorow, M. (2018) BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation, Exp. Eye. Res., 174, 173-184, https://doi.org/10.1016/j.exer.2018.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morishita, H., and Mizushima, N. (2016) Autophagy in the lens, Exp. Eye Res., 144, 22-28, https://doi.org/10.1016/j.exer.2015.08.019.

    Article  CAS  PubMed  Google Scholar 

  83. Remé, C. E., and Young, R. W. (1977) The effects of hibernation on cone visual cells in the ground squirrel, Invest. Ophthalmol. Vis. Sci., 16, 815-840.

    PubMed  Google Scholar 

  84. Altshuler-Keylin, S., Shinoda, K., Hasegawa, Y., Ikeda, K., Hong, H., et al. (2016) Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance, Cell. Metab., 24, 402-419, https://doi.org/10.1016/j.cmet.2016.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu, X., Altshuler-Keylin, S., Wang, Q., Chen, Y., Henrique Sponton, C., et al. (2018) Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism, Sci. Signal., 11, https://doi.org/10.1126/scisignal.aap8526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fujiwara, M., Tian, L., Le, P. T., DeMambro, V. E., Becker, K. A., et al. (2019) The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice, J. Biol. Chem., 294, 12683-12694, https://doi.org/10.1074/jbc.RA119.008630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moriyama, M., Moriyama, H., Uda, J., Matsuyama, A., Osawa, M., and Hayakawa, T. (2014) BNIP3 plays crucial roles in the differentiation and maintenance of epidermal keratinocytes, J. Invest. Dermatol., 134, 1627-1635, https://doi.org/10.1038/jid.2014.11.

    Article  CAS  PubMed  Google Scholar 

  88. Jones, L. A., Harland, D. P., Jarrold, B. B., Connolly, J. E., and Davis, M. G. (2018) The walking dead: sequential nuclear and organelle destruction during hair development, Br. J. Dermatol., 178, 1341-1352, https://doi.org/10.1111/bjd.16148.

    Article  CAS  PubMed  Google Scholar 

  89. Sin, J., Andres, A. M., Taylor, D. J. R., Weston, T., Hiraumi, Y., et al. (2016) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts, Autophagy, 12, 369-380, https://doi.org/10.1080/15548627.2015.1115172.

    Article  CAS  PubMed  Google Scholar 

  90. Gong, G., Song, M., Csordas, G., Kelly, D. P., Matkovich, S. J., and Dorn, G. W., 2nd. (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice, Science, 350, 2459, https://doi.org/10.1126/science.aad2459.

    Article  CAS  Google Scholar 

  91. Lampert, M. A., Orogo, A. M., Najor, R. H., Hammerling, B. C., Leon, L. J., et al. (2019) BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation, Autophagy, 15, 1182-1198, https://doi.org/10.1080/15548627.2019.1580095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kanki, T., and Klionsky, D. J. (2008) Mitophagy in yeast occurs through a selective mechanism, J. Biol. Chem., 283, 32386-32393, https://doi.org/10.1074/jbc.M802403200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Joshi, A., and Kundu, M. (2013) Mitophagy in hematopoietic stem cells: the case for exploration, Autophagy, 9, 1737-1749, https://doi.org/10.4161/auto.26681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mortensen, M., Ferguson, D. J. P., Edelmann, M., Kessler, B., Morten, K.J., et al. (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo, Proc. Natl. Acad. Sci. USA, 107, 832-837, https://doi.org/10.1073/pnas.0913170107.

    Article  PubMed  Google Scholar 

  95. Xiang, G., Yang, L., Long, Q., Chen, K., Tang, H., et al. (2017) BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming, Autophagy, 13, 1543-1555, https://doi.org/10.1080/15548627.2017.1338545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vazquez-Martin, A., Van den Haute, C., Cufí, S., Corominas-Faja, B., Cuyàs, E., et al. (2016) Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate, Aging, 8, 1330-1352, https://doi.org/10.18632/aging.100976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. EstebanMartínez, L., Sierra-Filardi, E., McGreal, R. S., Salazar-Roa, M., Mariño, G., et al. (2017) Programmed mitophagy is essential for the glycolytic switch during cell differentiation, EMBO J., 36, 1688-1706, https://doi.org/10.15252/embj.201695916.

    Article  CAS  Google Scholar 

  98. Al Rawi, S., Louvet-Vallée, S., Djeddi, A., Sachse, M., Culetto, E., et al. (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission, Science, 334, 1144-1147, https://doi.org/10.1126/science.1211878.

    Article  CAS  PubMed  Google Scholar 

  99. Lim, Y., Rubio-Peña, K., Sobraske, P. J., Molina, P. A., Brookes, P. S., et al. (2019) Fndc-1 contributes to paternal mitochondria elimination in C. elegans, Dev. Biol., 454, 15-20, https://doi.org/10.1016/j.ydbio.2019.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Molina, P., Lim, Y., and Boyd, L. (2019) Ubiquitination is required for the initial removal of paternal organelles in C. elegans, Dev. Biol., 453, 168-179, https://doi.org/10.1016/j.ydbio.2019.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karavaeva, I. E., Golyshev, S. A., Smirnova, E. A., Sokolov, S. S., Severin, F. F., and Knorre, D. A. (2017) Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA, J. Cell Sci., 130, 1274-1284, https://doi.org/10.1242/jcs.197269.

    Article  CAS  PubMed  Google Scholar 

  102. Sato, M., and Sato, K. (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA, Biochim. Biophys. Acta, 1833, 1979-1984, https://doi.org/10.1016/j.bbamcr.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  103. DeLuca, S. Z., and O’Farrell, P. H. (2012) Barriers to male transmission of mitochondrial DNA in sperm development, Dev. Cell, 22, 660-668, https://doi.org/10.1016/j.devcel.2011.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Politi, Y., Gal, L., Kalifa, Y., Ravid, L., Elazar, Z., and Arama, E. (2014) Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila, Dev. Cell, 29, 305-320, https://doi.org/10.1016/j.devcel.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  105. Luo, S.-M., Ge, Z.-J., Wang, Z.-W., Jiang, Z.-Z., Wang, Z.-B., et al. (2013) Unique insights into maternal mitochondrial inheritance in mice, Proc. Natl. Acad. Sci. USA, 110, 13038-13043, https://doi.org/10.1073/pnas.1303231110.

    Article  PubMed  Google Scholar 

  106. Rojansky, R., Cha, M.-Y., and Chan, D. C. (2016) Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1, Elife, 5, https://doi.org/10.7554/eLife.17896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Song, W.-H., Yi, Y.-J., Sutovsky, M., Meyers, S., and Sutovsky, P. (2016) Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization, Proc. Natl. Acad. Sci. USA, 113, 5261-5270, https://doi.org/10.1073/pnas.1605844113.

    Article  CAS  Google Scholar 

  108. Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999) Ubiquitin tag for sperm mitochondria, Nature, 402, 371-372, https://doi.org/10.1038/46466.

    Article  CAS  PubMed  Google Scholar 

  109. Fehrenbacher, K. L., Yang, H.-C., Gay, A. C., Huckaba, T. M., and Pon, L. A. (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast, Curr. Biol., 14, 1996-2004, https://doi.org/10.1016/j.cub.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  110. Higuchi-Sanabria, R., Charalel, J. K., Viana, M. P., Garcia, E. J., Sing, C. N., et al. (2016) Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 27, 776-787, https://doi.org/10.1091/mbc.E15-07-0455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McFaline-Figueroa, J. R., Vevea, J., Swayne, T. C., Zhou, C., Liu, C., et al. (2011) Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast, Aging Cell, 10, 885-895, https://doi.org/10.1111/j.1474-9726.2011.00731.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Knorre, D. A., Azbarova, A. V., Galkina, K. V., Feniouk, B. A., and Severin, F. F. (2018) Replicative aging as a source of cell heterogeneity in budding yeast, Mech. Ageing Dev., 176, 24-31, https://doi.org/10.1016/j.mad.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  113. Dalton, C. M., and Carroll, J. (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte, J. Cell Sci., 126, 2955-2964, https://doi.org/10.1242/jcs.128744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rivolta, M. N., and Holley, M. C. (2002) Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro, Brain Res. Dev. Brain Res., 133, 49-56, https://doi.org/10.1016/s0165-3806(01)00321-2.

    Article  CAS  PubMed  Google Scholar 

  115. Katajisto, P., Döhla, J., Chaffer, C. L., Pentinmikko, N., Marjanovic, N., et al. (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness, Science, 348, 340-343, https://doi.org/10.1126/science.1260384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hinge, A., He, J., Bartram, J., Javier, J., Xu, J., et al. (2020) Asymmetrically segregated mitochondria provide cellular memory of hematopoietic stem cell replicative history and drive HSC attrition, Cell Stem Cell, 26, 420-430, https://doi.org/10.1016/j.stem.2020.01.016.

    Article  CAS  PubMed  Google Scholar 

  117. Wu, M.-J., Chen, Y.-S., Kim, M. R., Chang, C.-C., Gampala, S., et al. (2019) Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin, Cell. Metab., 29, 993-1002, https://doi.org/10.1016/j.cmet.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  118. Krakauer, D. C., and Mira, A. (1999) Mitochondria and germ-cell death, Nature, 400, 125-126, https://doi.org/10.1038/22026.

    Article  CAS  PubMed  Google Scholar 

  119. Floros, V. I., Pyle, A., Dietmann, S., Wei, W., Tang, W. C. W., et al. (2018) Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos, Nat. Cell. Biol., 20, 144-151, https://doi.org/10.1038/s41556-017-0017-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 17-14-01314-P), as well as by the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of Living Systems and Synthetic Biology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Chernyak.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyamzaev, K.G., Knorre, D.A. & Chernyak, B.V. Mitoptosis, Twenty Years After. Biochemistry Moscow 85, 1484–1498 (2020). https://doi.org/10.1134/S0006297920120020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120020

Keywords

Navigation