Skip to main content
Log in

Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

KLF2 is a member of the Kruppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-KB-dependent genes. Transcription factors KLF2 and NF-KB are reciprocal antagonists. KLF2 inhibits induction of NF-KB-dependent genes, whereas NF-KB downregulates KLF2 expression. KLF2-mediated inhibition of NF-KB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-ip and TNFa and results in the attenuation of inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPK:

AMP-dependent protein kinase

CaMK:

calcium/calmodulin-dependent protein kinase

eNOS:

endothelial nitric oxide synthase

ERK5:

extracellular signal-regulated kinase 5

HDAC:

histone deacetylase

HO-1:

heme oxygenase-1

ICAM-1:

intercellular adhesion molecule-1

KLF:

Kruppel-like factor

MAPK:

mitogen-activated protein kinase

MEF2:

myocyte enhancer factor 2

MEK5:

MAP kinase kinase 5

MEKK:

MAP kinase kinase kinase

PECAM-1:

platelet/endothelial cell adhesion molecule-1

VCAM-1:

vascular cell adhesion molecule-1

VEGF(R):

vascular endothelial growth factor (receptor).

References

  1. Miller, I. J., and Bieker, J. J. (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kriippel family of nuclear proteins, Mol. Cell Biol., 13, 2776–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pei, J., and Grishin, N. V. (2015) C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and BIOCHEMISTRY (Moscow) Vol. 85 No. 1 2020 Klumpfuss families in metazoans and beyond, Gene, 573, 91–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pollak, N. M., Hoffman, M., Goldberg, I. J., and Drosatos, K. (2018) Kriippel-like factors: crippling and un-crippling metabolic pathways, JACC Basic Transl. Sci., 3, 132–156.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lomberk, G., and Urrutia, R. (2005) The family feud: turning off Spl by Sp 1-like KLF proteins, Biochem. J., 392, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stubbs, L., Sun, Y., and Caetano-Anolles, D. (2011) Function and evolution of C2H2 zinc finger arrays, Subcell. Biochem., 52, 75–94.

    Article  CAS  PubMed  Google Scholar 

  6. Bialkowska, A. B., Yang, V. W., and Mallipattu, S. K. (2017) Kriippel-like factors in mammalian stem cells and development, Development, 144, 737–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pearson, R., Fleetwood, J., Eaton, S., Crossley M., and Bao, S. (2008) Kriippel-like transcription factors: a functional family, Int. J. Biochem. Cell Biol., 40, 1996–2001.

    Article  CAS  PubMed  Google Scholar 

  8. Kaczynski, J., Cook, T., and Urrutia, R. (2003) Sp1 - and Kriippel-like transcription factors, Genome Biol., 4, 206.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu, Z., and Wang, S. (2013) Role of Kriippel-like transcription factors in adipogenesis, Dev. Biol., 373, 235–243.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, P., Basu, P., Redmond, L. C., Morris, P. E., Rupon, J. W., Ginder, G. D., and Lloyd, J. A. (2005) A functional screen for Kriippel-like factors that regulate the human gamma-globin gene through the CACCC promoter element, Blood Cells Mol. Dis., 35, 227–235.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, B., Ami, Y. T., McPherson, L., Clayberger, C., and Krensky A. M. (2007) Interaction of PRP4 with Kruppel-like factor 13 regulates CCL5 transcription, J. Immunol., 178, 7081–7087.

    Article  CAS  PubMed  Google Scholar 

  12. Kaczynski, J. A., Conley A. A., Fernandez Zapico, M., Delgado, S. M., Zhang, J. S., and Urrutia, R. (2002) Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Spl-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter, Biochem. J., 366, 873–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mas, C., Lussier-Price, M., Soni, S., Morse, T., Arseneault, G., Di Lello, P., Lafrance-Vanasse, J., Bieker, J. J., and Omichinski, J. G. (2011) Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF), Proc. Natl. Acad. Sci. USA, 108, 10484–10489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Presnell, J. S., Schnitzler, C. E., and Browne, W. E. (2015) KLF/SP transcription factor family evolution: expansion, diversification, and innovation in eukaryotes, Genome Biol. Evol., 7, 2289–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitz, M. L., and de la Vega, L. (2015) New insight into the role of histone deacetylases as coactivators of inflammatory gene expression, Antioxid. Redox Signal., 23, 85–98.

    Article  CAS  PubMed  Google Scholar 

  16. Wagner, T., Brand, P., Heinzel, T., and Kramer, O. H. (2014) Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis, Biochim. Biophys. Acta, 1846, 524–538.

    CAS  PubMed  Google Scholar 

  17. Anderson, K. P., Kern, C. B., Crable, S. C., and Lingrel, J. B. (1995) Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kriippel-like factor: identification of a new multigene family, Mol. Cell Biol., 15, 5957–5965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Novodvorsky P., and Chico, T. J. (2014) The role of the transcription factor KLF2 in vascular development and disease, Prog. Mol. Biol. Transl. Sci., 124, 155–188.

    Article  CAS  PubMed  Google Scholar 

  19. Jha, P., and Das, H. (2017) KLF2 in regulation of NF-KB-mediated immune cell function and inflammation, Int. J. Mol. Sci., 18, E2383.

    Article  PubMed  CAS  Google Scholar 

  20. Ghaleb, A. M., and Yang, V. W. (2017) Kriippel-like factor 4 (KLF4): what we currently know, Gene, 611, 27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chestkov, I. V., Khomyakova, E. A., Vasilieva, E. A., Lagarkova, M. A., and Kiselev, S. L. (2014) Molecular barriers to processes of genetic reprogramming and cell transformation, Biochemistry (Moscow), 79, 1297–1307.

    Article  CAS  Google Scholar 

  22. Kunes, P., Holubcova, Z., and Krejsek, J. (2009) Occurrence and significance of the nuclear transcription factor Kriippel-like factor 4 (KLF4) in the vessel wall, Acta Medica (Hradec Kralove), 52, 135–139.

    Article  Google Scholar 

  23. Villarreal, G., Jr., Zhang, Y., Larman, H. B., Gracia-Sancho, J., Koo, A., and Garcia-Cardena, G. (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells, Biochem. Biophys. Res. Commun., 391, 984–989.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, Y., and Sun, Y. (2013) The FBW7-KLF2 axis regulates endothelial functions, Cell Res., 23, 741–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X., Srinivasan, S. V., and Lingrel, J. B. (2004) WWP1-dependent ubiquitination and degradation of the lung Kriippel-like factor, KLF2, Biochem. Biophys. Res. Commun., 316, 139–148.

    Article  CAS  PubMed  Google Scholar 

  26. Sohn, S. J., Li, D., Lee, L. K., and Wmoto, A. (2005) Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase, Mol. Cell Biol., 25, 8553–8566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, X., Gao, B., Ponnusamy M., Lin, Z., and Liu, J. (2017) MEF2 signaling and human diseases, Oncotarget, 8, 112152–112165.

    PubMed  PubMed Central  Google Scholar 

  28. Roberts, O. L., Holmes, K., Muller, J., Cross, D. A., and Cross, M. J. (2009) ERK5 and the regulation of endothelial cell function, Biochem. Soc. Trans., 37, 1254–1259.

    Article  CAS  PubMed  Google Scholar 

  29. Drew, B. A., Burow, M. E., and Beckman, B. S. (2012) MEK5/ERK5 pathway: the first fifteen years, Biochim. Biophys. Acta, 1825, 37048.

    Article  CAS  Google Scholar 

  30. Nakajima, H., and Mochizuki, N. (2017) Flow pattern-dependent endothelial cell responses through transcriptional regulation, Cell Cycle, 16, 1893–1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nigro, P., Abe, J., and Berk, B. C. (2011) Flow shear stress and atherosclerosis: a matter of site specificity, Antioxid. Redox Signal., 15, 1405–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simmons, R. D., Kumar, S., and Jo, H. (2016) The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches, Arch. Biochem. Biophys., 591, 111–131.

    Article  CAS  PubMed  Google Scholar 

  33. Lu, L., Huang, W., Hu, W., Jiang, L., Li, Y., Wu, X., Yuan, D., and Li, M. (2019) Kruppel-like factor 2 mediated anti-prolif-erative and anti-metastasis effects of simvastatin in p53 mutant colon cancer, Biochem. Biophys. Res. Commun., 511, 772–779.

    Article  CAS  PubMed  Google Scholar 

  34. Heo, K. S., Berk, B. C., and Abe, J. (2016) Disturbed flow-induced endothelial proatherogenic signaling via regulating post-translational modifications and epigenetic events, Antioxid. Redox Signal., 25, 435–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ballermann, B. J., Dardik, A., Eng, E., and Liu, A. (1998) Shear stress and the endothelium, Kidney Int. Suppl., 67, S100-108.

    Article  Google Scholar 

  36. Givens, C., and Tzima, E. (2016) Endothelial mechanosig-naling: does one sensor fit all? Antioxid. Redox Signal., 25, 373–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, H. B., Zhang, J., Xin, S. Y., Liu, C., Wang, C. Y., Zhao, D., and Zhang, Z. R. (2013) Mechanosensitive properties in the endothelium and their roles in the regulation of endothelial function, J. Cardiovasc. Pharmacol, 61, 461–470.

    Article  CAS  PubMed  Google Scholar 

  38. Ando, J., and Yamamoto, K. (2013) Flow detection and calcium signaling in vascular endothelial cells, Cardiovasc. Res., 99, 260–268.

    Article  CAS  PubMed  Google Scholar 

  39. Snyder, J. L., McBeath, E., Thomas, T. N., Chiu, Y. J., Clark, R. L., and Fujiwara, K. (2017) Mechanotransduction properties of the cytoplasmic tail of PECAM-1, Biol. Cell, 109, 312–321.

    Article  CAS  PubMed  Google Scholar 

  40. Conway, D. E., Coon, B. G., Budatha, M., Arsenovic, P. T, Orsenigo, F., Wessel, F., Zhang, J., Zhuang, Z., Dejana, E., Vestweber, D., and Schwartz, M. A. (2017) VE-cadherin phosphorylation regulates endothelial fluid shear stress responses through the polarity protein LGN, Curr. Biol., 11, 2219–2225.

    Article  CAS  Google Scholar 

  41. Kwon, I. S., Wang, W., Xu, S., and Jin, Z. G. (2014) Histone deacetylase 5 interacts with Kruppel-like factor 2 and inhibits its transcriptional activity in endothelium, Cardiovasc. Res., 104, 127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McSweeney S. R., Warabi, E., and Siow, R. C. (2016) Nrf2 as an endothelial mechanosensitive transcription factor: going with the flow, Hypertension, 67, 20–29.

    Article  CAS  PubMed  Google Scholar 

  43. Takabe, W., Warabi, E., and Noguchi, N. (2011) Antiatherogenic effect of laminar shear stress via Nrf2 activation, Antioxid. Redox Signal., 15, 1415–1426.

    Article  CAS  PubMed  Google Scholar 

  44. Turpaev, K. T. (2013) Keapl-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles, Biochemistry (Moscow), 78, 111–126.

    Article  CAS  Google Scholar 

  45. Wardyn, J. D., Ponsford, A. H., and Sanderson, C. M. (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways, Biochem. Soc. Trans., 43, 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar, A., Lin, Z., SenBanerjee, S., and Jain, M. K. (2005) Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases, Mol. Cell Biol., 25, 5893–5903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, H. Y., Youn, S. W., Cho, H. J., Kwon, Y. W., Lee, S. W., Kim, S. J., Park, Y. B., Oh, B. H., and Kim, H. S. (2013) FOXOl impairs whereas statin protects endothelial function in diabetes through reciprocal regulation of Kruppel-like factor 2, Cardiovasc. Res., 97, 143–152.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar, A., Kim, C. S., Hoffman, T. A., Naqvi, A., Dericco, J., Jung, S. B., Lin, Z., Jain, M. K., and Irani, K. (2011) p53 impairs endothelial function by transcriptionally repressing Kruppel-like factor 2, Arterioscler. Thromb. Vase. Biol., 31, 133–141.

    Article  CAS  Google Scholar 

  49. Wu, W., Xiao, H., Laguna-Fernandez, A., Villarreal, G., Wang, K. C., Geary, G. G., Zhang, Y., Wang, W. C., Huang, H. D., Zhou, J., Li, Y. S., Chien, S., Garcia-Cardena, G., and Shyy J. Y. (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a, Circulation, 124, 633–641.

    Article  CAS  PubMed  Google Scholar 

  50. Xin, Y., Zhang, H., Jia, Z., Ding, X., Sun, Y., Wang, Q., and Xu, T. (2018) Resveratrol improves uric acid-induced pancreatic P-cells injury and dysfunction through regulation of miR-126, Biomed. Pharmacother., 102, 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  51. Manoharan, P., Basford, J. E., Pilcher-Roberts, R., Neumann, J., Hui, D. Y., and Lingrel, J. B. (2014) Reduced levels of microRNAs miR-124a and miR-150 are associated with increased proinflammatory mediator expression in Kruppel-like factor 2 (KLF2)-deficient macrophages, J. Biol. Chem., 289, 31638–31646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marin, T., Gongol, B., Chen, Z., Woo, B., Subramaniam, S., Chien, S., and Shyy, J. Y. (2013) Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state, Free Radic. Biol. Med., 64, 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu, U. B., Duellman, T., Weaver, S. J., Tao, Y., and Yang, J. (2015) Endothelial protective genes induced by statin are mimicked by ERK5 activation as triggered by a drug combination of FTI-277 and GGTI-298, Biochim. Biophys. Acta, 1850, 1415–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, J., Natarajan, S. K., Chronos, N., and Singh, J. P. (2015) Cerivastatin represses atherogenic gene expression through the induction of KLF2 via isoprenoid metabolic pathways, Cell. Mol. Biol. Lett., 20, 825–839.

    Article  PubMed  Google Scholar 

  55. Jeong, A., Suazo, K. F., Wood, W. G., Distefano, M. D., and Li, L. (2018) Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease, Crit. Rev. Biochem. Mol. Biol., 53, 279–310.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Turpaev, K., Glatigny A., Bignon, J., Delacroix, H., and Drapier, J. C. (2010) Variation in gene expression profiles of human monocytic U937 cells exposed to various fluxes of nitric oxide, Free Radic. Biol. Med., 48, 298–305.

    Article  CAS  PubMed  Google Scholar 

  57. Xu, Q., Luan, T., Fu, S., Yang, J., Jiang, C., and Xia, F. (2014) Effects of pravastatin on the expression of VCAM-1 and its target gene miR-126 in cultured human umbilical vein endothelial cells, Cardiovasc. Ther., 32, 193–197.

    Article  CAS  PubMed  Google Scholar 

  58. Arefieva, T. I., Filatova, A. Y., Potekhina, A. V., and Shchinova, A. M. (2018) Immunotropic effects and proposed mechanism of action for 3-hydroxy-3-methylglu-taryl-coenzyme A reductase inhibitors (statins), Biochemistry (Moscow), 83, 874–889.

    Article  CAS  Google Scholar 

  59. Davies, J. T., Delfino, S. E, Feinberg, C. E., Johnson, M. F, Nappi, V. L., Olinger, J. T., Schwab, A. P., and Swanson, H. I. (2016) Current and emerging uses of statins in clinical therapeutics: a review, Lipid Insights, 9, 13–29.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ebert, R., Zeck, S., Meissner-Weigl, J., Klotz, B., Rachner, T. D., Benad, P., Klein-Hitpass, L., Rudert, M., Hofbauer, L. C., and Jakob, F (2012) Kruppel-like factors KLF2 and 6 and Ki-67 are direct targets of zoledronic acid in MCF-7 cells, Bone, 50, 723–732.

    Article  CAS  PubMed  Google Scholar 

  61. Rogers, M. J., Crockett, J. C., Coxon, F. P., and Monkkonen, J. (2011) Biochemical and molecular mechanisms of action of bisphosphonates, Bone, 49, 34–41.

    Article  CAS  PubMed  Google Scholar 

  62. Chu, H., Li, H., Guan, X., Yan, H., Zhang, X., Cui, X., Li, X., and Cheng, M. (2018) Resveratrol protects late endothelial progenitor cells from TNF-a-induced inflammatory damage by upregulating Kriippel-like factor-2, Mol. Med. Rep., 17, 5708–5715.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bai, X., Yao, L., Ma, X., andXu, X. (2018) Small molecules as SIRT modulators, Mini Rev. Med. Chem., 18, 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  64. Santos, J. C., Gotardo, E. M., Brianti, M. T., Piraee, M., Gambero, A., and Ribeiro, M. L. (2014) Effects of yerba mate, a plant extract formulation (đYGD”) and resveratrol in 3T3-L1 adipogenesis, Molecules, 19, 16909–16924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Xu, Y., Liu, P., Xu, S., Koroleva, M., Zhang, S., Si, S., and Jin, Z. G. (2017) Tannic acid as a plant-derived polyphenol exerts vasoprotection via enhancing KLF2 expression in endothelial cells, Sci. Rep., 27, 6686.

    Article  CAS  Google Scholar 

  66. Argari, D. P., Santos, J. C., Gambero, A., and Ribeiro, M. L. (2013) The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogenesis, Food Chem., 141, 809–815.

    Article  CAS  Google Scholar 

  67. Jeon, H. J., Choi, H. S., Lee, Y. J., Hwang, J. H., Lee, O. H., Seo, M. J., Kim, K. J., and Lee, B. Y. (2015) Seapolynol extracted from Ecklonia cava inhibits adipocyte differentiation in vitro and decreases fat accumulation in vivo, Molecules, 20, 21715–21731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J. E., and Ge, K. (2014) Transcriptional and epigenet-ic regulation of PPARgamma expression during adipogenesis, Cell Biosci., 4, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kim, S. J., Xiao, J., Wan, J., Cohen, P., and Yen, K. (2017) Mitochondrially derived peptides as novel regulators of metabolism, J. Physiol., 595, 6613–6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, X., Wu, Z., He, Y., Zhang, H., Tian, L., Zheng, C., Shang, T., Zhu, Q., Li, D., and He, Y. (2018) Humanin prevents high glucose-induced monocyte adhesion to endothelial cells by targeting KLF2, Mol. Immunol., 101, 245–250.

    Article  CAS  PubMed  Google Scholar 

  71. Wang, D., Song, Y., Zhang, J., Pang, W., Wang, X., Zhu, Y., and Li, X. (2017) AMPK-KLF2 signaling pathway mediates the proangiogenic effect of erythropoietin in endothelial colony-forming cells, Am. J. Physiol. Cell Physiol., 313, C674–C685.

    Article  PubMed  CAS  Google Scholar 

  72. Sako, K., Fukuhara, S., Minami, T., Hamakubo, T., Song, H., Kodama, T., Fukamizu, A., Gutkind, J. S., Koh, G. Y., and Mochizuki, N. (2009) Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinosi-tide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2, J. Biol. Chem., 284, 5592–5601.

    Article  CAS  PubMed  Google Scholar 

  73. Turpaev, K. T. (2017) Genes and Cell Regulatory Systems Acting via NO-Linked Cascade and Thiol Group-Modified Receptors: Abstract of the doctoral dissertation [in Russian], Institute of Molecular Biology, Moscow.

  74. Tian, R., Li, R., Liu, Y., Liu, J., Pan, T., Zhang, R., Liu, B., Chen, E., Tang, Y., and Qu, H. (2019) Metformin ameliorates endotoxemia-induced endothelial pro-inflammatory responses via AMPK-dependent mediation of HDAC5 and KLF2, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 1701–1712.

    Article  CAS  PubMed  Google Scholar 

  75. Triggle, C. R., and Ding, H. (2016) Metformin is not just an antihyperglycemic drug but also has protective effects on the vascular endothelium, Acta Physiol. (Oxf.), 219, 138–151.

    Article  CAS  Google Scholar 

  76. Chistiakov, D. A., Orekhov, A. N., and Bobryshev, Y. V. (2017) Treatment of cardiovascular pathology with epige-netically active agents: focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation, Int. J. Cardiol., III, 66–82.

    Article  Google Scholar 

  77. Xu, Y., Xu, S., Liu, P., Koroleva, M., Zhang, S., Si, S., and Jin, Z. G. (2017) Suberanilohydroxamic acid as a pharmacological Kruppel-like factor 2 activator that represses vascular inflammation and atherosclerosis, J. Am. Heart Assoc, 6, e007134.

    PubMed  PubMed Central  Google Scholar 

  78. Das, M., Laha, D., Kanji, S., Joseph, M., Aggarwal, R., Iwenofu, O. H., Pompili, V. J., Jain, M. K., and Das, H. (2019) Induction of Kruppel-like factor 2 reduces K/BxN serum-induced arthritis, J. Cell. Mol. Med., 23, 1386–1395.

    Article  CAS  PubMed  Google Scholar 

  79. Hadden, M. J., and Advani, A. (2018) Histone deacetylase inhibitors and diabetic kidney disease, Int. J. Mol. Sci., 19, E2630.

    Article  PubMed  CAS  Google Scholar 

  80. Yoon, S., and Eom, G. H. (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases, Chonnam. Med. J., 52, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dekker, R. J., van Thienen, J. V., Rohlena, J., de Jager, S. C., Elderkamp, Y. W., Seppen, J., de Vries, C. J., Biessen, E. A., van Berkel, T. J., Pannekoek, H., and Horrevoets, A. J. (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes, Am. J. Pathol., 167, 609–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Das, M., Lu, J., Joseph, M., Aggarwal, R., Kanji, S., McMichael, B. K., Lee, B. S., Agarwal, S., Ray-Chaudhury A., Iwenofu, O. H., Kuppusamy P., Pompili, V. J., Jain, M. K., and Das, H. (2012) Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-ip-induced arthritis, Curr. Mol. Med., 12, 113–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhong, F., Lee, K., and He, J. C. (2018) Role of Kriippel-like factor-2 in kidney disease, Nephrology (Carlton), 13 (Suppl. 4), 53–56.

    Article  CAS  Google Scholar 

  84. Wmkelmann, R., Sandrock, L., Kirberg, J., Jack, H. M., and Schuh, W. (2014) KLF2 - a negative regulator of pre -B cell clonal expansion and B cell activation, PloSOne, 29, e97953.

    Article  CAS  Google Scholar 

  85. Nayak, L., Goduni, L., Takami, Y., Sharma, N., Kapil, P., Jain, M. K., and Mahabeleshwar, G. H. (2013) Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation, Am. J. Pathol., 182, 1696–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pabbisetty S. K., Rabacal, W., Volanakis, E. J., Parekh, V. V., Olivares-Villagomez, D., Cendron, D., Boyd, K. L., Van Kaer, L., and Sebzda, E. (2016) Peripheral tolerance can be modified by altering KLF2-regulated Treg migration, Proc. Natl. Acad. Sci. USA, 113, E4662-E4670.

    Article  CAS  Google Scholar 

  87. Li, M., Wang, X., Fu, W., He, S., Li, D., and Ke, Q. (2011) CD4+CD25+Foxp3+ regulatory T cells protect endothelial function impaired by oxidized low density lipoprotein via the KLF-2 transcription factor, Cell. Physiol. Biochem., 28, 639–648.

    Article  PubMed  CAS  Google Scholar 

  88. Pabbisetty, S. K., Rabacal, W., Maseda, D., Cendron, D., Collins, P. L., Hoek, K. L., Parekh, V. V., Aune, T. M., and Sebzda, E. (2014) KLF2 is a rate-limiting transcription factor that can be targeted to enhance regulatory T-cell production, Proc. Natl. Acad. Sci. USA, 111, 9579–9584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pisanti, S., Picardi, P., Ciaglia, E., D’Alessandro, A., and Bifulco, M. (2014) Novel prospects of statins as therapeutic agents in cancer, Pharmacol. Res., 88, 84–98.

    Article  CAS  PubMed  Google Scholar 

  90. Fullerton, M. D. (2016) AMP-activated protein kinase and its multifaceted regulation of hepatic metabolism, Curr. Opin. lipidoi, 11, 172–180.

    Article  CAS  Google Scholar 

  91. Marcelo, K. L., Means, A. R., and York, B. (2016) The Ca2+/calmodulin/CaMKK2 axis: Nature’s metabolic CaM shaft, Trends Endocrinol. Metab., 11, 706–718.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Turpaev.

Additional information

Funding

The study was conducted within the frame-work of the State Assignment no. AAAA-A18-118012390247-0.

Conflict of interest

The author declares no conflict of interest.

Compliance with ethical standards

Current review contains no description of experiments using human subjects or animals performed by the author.

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 1, pp. 64–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turpaev, K.T. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. Biochemistry Moscow 85, 54–67 (2020). https://doi.org/10.1134/S0006297920010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920010058

Keywords

Navigation