Skip to main content
Log in

Adsorption of bacteriophages on bacterial cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The biological functions of bacteriophage virions come down to the solution of three basic problems: to provide protection of viral nucleic acid from the factors of extracellular environment, to recognize a host suitable for phage replication, and to provide the delivery of nucleic acid through bacterial cell envelopes. This review considers the main regularities of phage–cell interaction at the initial stages of infection of tailed bacteriophages, from the reversible binding with receptors on the surface to the beginning of phage DNA entry. Data on the structure and functions of the phage adsorption apparatus, the main quantitative characteristics of the adsorption process, and the mechanisms of adaptation of phages and their hosts to each other effective at the stage of adsorption are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knoll, A. H. (2015) Paleobiological perspectives on early microbial evolution, Cold Spring Harb. Perspect. Biol., 7, a018093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Postler, T. S., and Ghosh, S. (2017) Understanding the holobiont: how microbial metabolites affect human health and shape the immune system, Cell Metab., 26, 110–130.

    Article  CAS  PubMed  Google Scholar 

  3. Putnam, H. M., Barott, K. L., Ainsworth, T. D., and Gates, R. D. (2017) The vulnerability and resilience of reef-building corals, Curr. Biol., 27, R528–R540.

    Article  CAS  PubMed  Google Scholar 

  4. Martin, F. M., Uroz, S., and Barker, D. G. (2017) Ancestral alliances: plant mutualistic symbioses with fungi and bacteria, Science, 356.

  5. Takeshita, K., and Kikuchi, Y. (2017) Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations, Res. Microbiol., 168, 175–187.

    Article  PubMed  Google Scholar 

  6. Clokie, M. R., Millard, A. D., Letarov, A. V., and Heaphy, S. (2011) Phages in nature, Bacteriophage, 1, 31–45.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sime-Ngando, T. (2014) Environmental bacteriophages: viruses of microbes in aquatic ecosystems, Front. Microbiol., 5, 355.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weinbauer, M. G. (2004) Ecology of prokaryotic viruses, FEMS Microbiol. Rev., 28, 127–181.

    Article  CAS  PubMed  Google Scholar 

  9. Weinbauer, M. G., and Rassoulzadegan, F. (2004) Are viruses driving microbial diversification and diversity? Environ. Microbiol., 6, 1–11.

    Article  PubMed  Google Scholar 

  10. Weinbauer, M. G., Bettarel, Y., Cattaneo, R., Luef, B., Maier, C., Motegi, C., Peduzzi, P., and Mari, X. (2009) Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research, Aquat. Microb. Ecol., 57, 321–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shabbir, M. A., Hao, H., Shabbir, M. Z., Wu, Q., Sattar, A., and Yuan, Z. (2016) Bacteria vs. bacteriophages: parallel evolution of immune arsenals, Front. Microbiol., 7, 1292.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dy, R. L., Richter, C., Salmond, G. P., and Fineran, P. C. (2014) Remarkable mechanisms in microbes to resist phage infections, Annu. Rev. Virol., 1, 307–331.

    Article  PubMed  CAS  Google Scholar 

  13. Samson, J. E., Magadan, A. H., Sabri, M., and Moineau, S. (2013) Revenge of the phages: defeating bacterial defences, Nat. Rev. Microbiol., 11, 675–687.

    Article  CAS  PubMed  Google Scholar 

  14. Touchon, M., Moura de Sousa, J. A., and Rocha, E. P. (2017) Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer, Curr. Opin. Microbiol., 38, 66–73.

    Article  CAS  PubMed  Google Scholar 

  15. King, A. M. Q., Adams, M. J., Carstens, E. B., and Lefkowitz, E. J. (2012) Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, Academic Press, London-Waltham-San Diego.

    Google Scholar 

  16. Bertozzi Silva, J., Storms, Z., and Sauvageau, D. (2016) Host receptors for bacteriophage adsorption, FEMS Microbiol. Lett., 363, fnw002.

    Article  PubMed  Google Scholar 

  17. Storms, Z. J., and Sauvageau, D. (2015) Modeling tailed bacteriophage adsorption: insight into mechanisms, Virology, 485, 355–362.

    Article  CAS  PubMed  Google Scholar 

  18. Casjens, S. R., and Molineux, I. J. (2012) Short noncontractile tail machines: adsorption and DNA delivery by podoviruses, Adv. Exp. Med. Biol., 726, 143–179.

    Article  CAS  PubMed  Google Scholar 

  19. Davidson, A. R., Cardarelli, L., Pell, L. G., Radford, D. R., and Maxwell, K. L. (2012) Long noncontractile tail machines of bacteriophages, Adv. Exp. Med. Biol., 726, 115–142.

    Article  CAS  PubMed  Google Scholar 

  20. Leiman, P. G., and Shneider, M. M. (2012) Contractile tail machines of bacteriophages, Adv. Exp. Med. Biol., 726, 93–114.

    Article  CAS  PubMed  Google Scholar 

  21. Mahony, J., and Van Sinderen, D. (2015) Novel strategies to prevent or exploit phages in fermentations, insights from phage–host interactions, Curr. Opin. Biotechnol., 32, 8–13.

    Article  CAS  PubMed  Google Scholar 

  22. Letarov, A. V., Golomidova, A. K., and Tarasyan, K. K. (2010) Ecological basis for rational phage therapy, Acta Naturae, 2, 60–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Auer, G. K., and Weibel, D. B. (2017) Bacterial cell mechanics, Biochemistry, 56, 3710–3724.

    Article  CAS  PubMed  Google Scholar 

  24. Jankute, M., Cox, J. A., Harrison, J., and Besra, G. S. (2015) Assembly of the mycobacterial cell wall, Annu. Rev. Microbiol., 69, 405–423.

    Article  CAS  PubMed  Google Scholar 

  25. Knirel, Y. A., and Valvano, M. A. (2011) Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis, and Interaction with Host Cells, Springer, Wien.

    Book  Google Scholar 

  26. Steimle, A., Autenrieth, I. B., and Frick, J. S. (2016) Structure and function: lipid A modifications in commensals and pathogens, Int. J. Med. Microbiol., 306, 290–301.

    Article  CAS  PubMed  Google Scholar 

  27. Amor, K., Heinrichs, D. E., Frirdich, E., Ziebell, K., Johnson, R. P., and Whitfield, C. (2000) Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli, Infect. Immun., 68, 1116–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikaido, H., and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability, Microbiol. Rev., 49, 1–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Andres, D., Baxa, U., Hanke, C., Seckler, R., and Barbirz, S. (2010) Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection, Biochem. Soc. Trans., 38, 1386–1389.

    Article  CAS  PubMed  Google Scholar 

  30. Andres, D., Hanke, C., Baxa, U., Seul, A., Barbirz, S., and Seckler, R. (2010) Tailspike interactions with lipopolysac-charide effect DNA ejection from phage P22 particles in vitro, J. Biol. Chem., 285, 36768–36775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ranjit, D. K., and Young, K. D. (2016) Colanic acid intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acid, J. Bacteriol., 198, 1230–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren, G., Wang, Z., Li, Y., Hu, X., and Wang, X. (2016) Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli, J. Bacteriol., 198, 1576–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porter, N. T., and Martens, E. C. (2017) The critical roles of polysaccharides in gut microbial ecology and physiology, Annu. Rev. Microbiol., doi: 10.1146/annurev-micro-102215-095316.

    Google Scholar 

  34. Kuhn, H. M., Meier-Dieter, U., and Mayer, H. (1988) ECA, the enterobacterial common antigen, FEMS Microbiol. Rev., 4, 195–222.

    Article  CAS  PubMed  Google Scholar 

  35. Gozdziewicz, T. K., Lugowski, C., and Lukasiewicz, J. (2014) First evidence for a covalent linkage between enter-obacterial common antigen and lipopolysaccharide in Shigella sonnei phase II ECALPS, J. Biol. Chem., 289, 2745–2754.

    Article  CAS  PubMed  Google Scholar 

  36. Slusky, J. S. (2016) Outer membrane protein design, Curr. Opin. Struct. Biol., 45, 45–52.

    Article  PubMed  CAS  Google Scholar 

  37. Power, M. L., Ferrari, B. C., Littlefield-Wyer, J., Gordon, D. M., Slade, M. B., and Veal, D. A. (2006) A naturally occurring novel allele of Escherichia coli outer membrane protein A reduces sensitivity to bacteriophage, Appl. Environ. Microbiol., 72, 7930–7932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, S. G., Mahon, V., Lambert, M. A., and Fagan, R. P. (2007) A molecular Swiss army knife: OmpA structure, function and expression, FEMS Microbiol. Lett., 273, 1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Choi, K. H., McPartland, J., Kaganman, I., Bowman, V. D., Rothman-Denes, L. B., and Rossmann, M. G. (2008) Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4, J. Mol. Biol., 378, 726–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szewczyk, J., and Collet, J. F. (2016) The journey of lipoproteins through the cell: one birthplace, multiple destinations, Adv. Microb. Physiol., 69, 1–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hooda, Y., Lai, C. C. L., and Moraes, T. F. (2017) Identification of a large family of slam-dependent surface lipoproteins in gram-negative bacteria, Front. Cell Infect. Microbiol., 7, 207.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wegrzyn, G., and Thomas, M. S. (2002) Modulation of the susceptibility of intestinal bacteria to bacteriophages in response to Ag43 phase variation–a hypothesis, Med. Sci. Monit., 8, HY15–18.

    PubMed  Google Scholar 

  43. Baldvinsson, S. B., Sorensen, M. C., Vegge, C. S., Clokie, M. R., and Brondsted, L. (2014) Campylobacter jejuni motility is required for infection of the flagellotropic bacteriophage F341, Appl. Environ. Microbiol., 80, 7096–7106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sorensen, M. C., Gencay, Y. E., Birk, T., Baldvinsson, S. B., Jackel, C., Hammerl, J. A., Vegge, C. S., Neve, H., and Brondsted, L. (2015) Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages, PLoS One, 10, e0116287.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Choi, Y., Shin, H., Lee, J. H., and Ryu, S. (2013) Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5, Appl. Environ. Microbiol., 79, 4829–4837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, T. J., Schwartz, C., and Guo, P. (2009) Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy, Ann. Biomed. Eng., 37, 2064–2081.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shin, H., Lee, J. H., Kim, H., Choi, Y., Heu, S., and Ryu, S. (2012) Receptor diversity and host interaction of bacte-riophages infecting Salmonella enterica serovar typhimurium, PLoS One, 7, e43392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yen, J. Y., Broadway, K. M., and Scharf, B. E. (2012) Minimum requirements of flagellation and motility for infection of Agrobacterium sp. strain H13-3 by flagellotropic bacteriophage 7-7-1, Appl. Environ. Microbiol., 78, 7216–7222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siegel, S. D., Liu, J., and Ton-That, H. (2016) Biogenesis of the Gram-positive bacterial cell envelope, Curr. Opin. Microbiol., 34, 31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van der Es, D., Hogendorf, W. F., Overkleeft, H. S., Van der Marel, G. A., and Codee, J. D. (2017) Teichoic acids: synthesis and applications, Chem. Soc. Rev., 46, 1464–1482.

    Article  PubMed  Google Scholar 

  51. Bielmann, R., Habann, M., Eugster, M. R., Lurz, R., Calendar, R., Klumpp, J., and Loessner, M. J. (2015) Receptor binding proteins of Listeria monocytogenes bacte-riophages A118 and P35 recognize serovar-specific teichoic acids, Virology, 477, 110–118.

    Article  CAS  PubMed  Google Scholar 

  52. Chang, Y., Shin, H., Lee, J. H., Park, C. J., Paik, S. Y., and Ryu, S. (2015) Isolation and genome characterization of the virulent Staphylococcus aureus bacteriophage SA97, Viruses, 7, 5225–5242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uchiyama, J., Takemura-Uchiyama, I., Kato, S., Sato, M., Ujihara, T., Matsui, H., Hanaki, H., Daibata, M., and Matsuzaki, S. (2014) In silico analysis of AHJD-like viruses, Staphylococcus aureus phages S24-1 and S13′, and study of phage S24-1 adsorption, Microbiology Open, 3, 257–270.

    CAS  PubMed  Google Scholar 

  54. Xia, G., Corrigan, R. M., Winstel, V., Goerke, C., Grundling, A., and Peschel, A. (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus, J. Bacteriol., 193, 4006–4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baptista, C., Santos, M. A., and Sao-Jose, C. (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB, J. Bacteriol., 190, 4989–4996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ainsworth, S., Sadovskaya, I., Vinogradov, E., Courtin, P., Guerardel, Y., Mahony, J., Grard, T., Cambillau, C., Chapot-Chartier, M. P., and Van Sinderen, D. (2014) Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity, MBio, 5, e00880–00814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Plaut, R. D., Beaber, J. W., Zemansky, J., Kaur, A. P., George, M., Biswas, B., Henry, M., Bishop-Lilly, K. A., Mokashi, V., Hannah, R. M., Pope, R. K., Read, T. D., Stibitz, S., Calendar, R., and Sozhamannan, S. (2014) Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in phage AP50c infection of Bacillus anthracis, J. Bacteriol., 196, 1143–1154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Edwards, P., and Smit, J. (1991) A transducing bacteriophage for Caulobacter crescentus uses the paracrystalline surface layer protein as a receptor, J. Bacteriol., 173, 5568–5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Callegari, M. L., Riboli, B., Sanders, J. W., Cocconcelli, P. S., Kok, J., Venema, G., and Morelli, L. (1998) The S-layer gene of Lactobacillus helveticus CNRZ 892: cloning, sequence and heterologous expression, Microbiology, 144, 719–726.

    Article  CAS  PubMed  Google Scholar 

  60. Abrahams, K. A., and Besra, G. S. (2016) Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target, Parasitology, doi: 10.1017/S0031182016002377.1-18.

    Google Scholar 

  61. Chen, J., Kriakov, J., Singh, A., Jacobs, W. R., Jr., Besra, G. S., and Bhatt, A. (2009) Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis, Microbiology, 155, 4050–4057.

    Article  CAS  PubMed  Google Scholar 

  62. Garcia-Doval, C., Caston, J. R., Luque, D., Granell, M., Otero, J. M., Llamas-Saiz, A. L., Renouard, M., Boulanger, P., and Van Raaij, M. J. (2015) Structure of the receptor-binding carboxy-terminal domain of the bacterio-phage T5 L-shaped tail fibre with and without its intramolecular chaperone, Viruses, 7, 6424–6440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Granell, M., Namura, M., Alvira, S., Kanamaru, S., and Van Raaij, M. J. (2017) Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fiber protein Gp34, Viruses, 9, 168.

    Article  PubMed Central  Google Scholar 

  64. Taylor, N. M., Prokhorov, N. S., Guerrero-Ferreira, R. C., Shneider, M. M., Browning, C., Goldie, K. N., Stahlberg, H., and Leiman, P. G. (2016) Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, 533, 346–352.

    Article  CAS  PubMed  Google Scholar 

  65. Koc, C., Xia, G., Kuhner, P., Spinelli, S., Roussel, A., Cambillau, C., and Stehle, T. (2016) Structure of the host-recognition device of Staphylococcus aureus phage varphi11, Sci. Rep., 6, 27581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sciara, G., Bebeacua, C., Bron, P., Tremblay, D., Ortiz-Lombardia, M., Lichiere, J., Van Heel, M., Campanacci, V., Moineau, S., and Cambillau, C. (2010) Structure of lactococcal phage p2 baseplate and its mechanism of activation, Proc. Natl. Acad. Sci. USA, 107, 6852–6857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Doval, C., and Van Raaij, M. J. (2012) Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers, Proc. Natl. Acad. Sci. USA, 109, 9390–9395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chatterjee, S., and Rothenberg, E. (2012) Interaction of bacteriophage l with its E. coli receptor, LamB, Viruses, 4, 3162–3178.

    Article  CAS  PubMed  Google Scholar 

  69. Zivanovic, Y., Confalonieri, F., Ponchon, L., Lurz, R., Chami, M., Flayhan, A., Renouard, M., Huet, A., Decottignies, P., Davidson, A. R., Breyton, C., and Boulanger, P. (2014) Insights into bacteriophage T5 structure from analysis of its morphogenesis genes and protein components, J. Virol., 88, 1162–1174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gallet, R., Shao, Y., and Wang, I. N. (2009) High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment, BMC Evol. Biol., 9, 241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Heller, K., and Braun, V. (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding, J. Bacteriol., 139, 32–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Golomidova, A. K., Kulikov, E. E., Prokhorov, N. S., Guerrero-Ferreira, R., Knirel, Y. A., Kostryukova, E. S., Tarasyan, K. K., and Letarov, A. V. (2016) Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis, Viruses, 8, 26.

    Article  PubMed Central  CAS  Google Scholar 

  73. Leiman, P. G., Battisti, A. J., Bowman, V. D., Stummeyer, K., Muhlenhoff, M., Gerardy-Schahn, R., Scholl, D., and Molineux, I. J. (2007) The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities, J. Mol. Biol., 371, 836–849.

    Article  CAS  PubMed  Google Scholar 

  74. Prokhorov, N. S., Riccio, C., Zdorovenko, E. L., Shneider, M. M., Browning, C., Knirel, Y. A., Leiman, P. G., and Letarov, A. V. (2017) Function of bacteriophage G7C esterase tailspike in host cell adsorption, Mol. Microbiol., doi: 10.1111/mmi.13710.

    Google Scholar 

  75. Dai, W., Hodes, A., Hui, W. H., Gingery, M., Miller, J. F., and Zhou, Z. H. (2010) Three-dimensional structure of tropism-switching Bordetella bacteriophage, Proc. Natl. Acad. Sci. USA, 107, 4347–4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Veesler, D., Spinelli, S., Mahony, J., Lichiere, J., Blangy, S., Bricogne, G., Legrand, P., Ortiz-Lombardia, M., Campanacci, V., Van Sinderen, D., and Cambillau, C. (2012) Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism, Proc. Natl. Acad. Sci. USA, 109, 8954–8958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bebeacua, C., Tremblay, D., Farenc, C., Chapot-Chartier, M. P., Sadovskaya, I., Van Heel, M., Veesler, D., Moineau, S., and Cambillau, C. (2013) Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2, J. Virol., 87, 12302–12312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dieterle, M. E., Spinelli, S., Sadovskaya, I., Piuri, M., and Cambillau, C. (2017) Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: a novel type of antireceptor widespread among lactic acid bacteria phages, Mol. Microbiol., 104, 608–620.

    Article  CAS  PubMed  Google Scholar 

  79. Steinbacher, S., Baxa, U., Miller, S., Weintraub, A., Seckler, R., and Huber, R. (1996) Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. Oantigen receptors, Proc. Natl. Acad. Sci. USA, 93, 10584–10588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lubkowski, J., Hennecke, F., Pluckthun, A., and Wlodawer, A. (1999) Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA, Structure, 7, 711–722.

    Article  CAS  PubMed  Google Scholar 

  81. Mondigler, M., Holz, T., and Heller, K. J. (1996) Identification of the receptor-binding regions of pb5 proteins of bacteriophages T5 and BF23, Virology, 219, 19–28.

    Article  CAS  PubMed  Google Scholar 

  82. Broeker, N. K., and Barbirz, S. (2017) Not a barrier but a key: how bacteriophages exploit host’s O-antigen as an essential receptor to initiate infection, Mol. Microbiol., doi: 10.1111/mmi.13729.

    Google Scholar 

  83. Zaccheus, M. V., Broeker, N. K., Lundborg, M., Uetrecht, C., Barbirz, S., and Widmalm, G. (2012) Structural studies of the O-antigen polysaccharide from Escherichia coli TD2158 having O18 serogroup specificity and aspects of its interaction with the tailspike endoglycosidase of the infecting bacteriophage HK620, Carbohydr. Res., 357, 118–125.

    Article  CAS  PubMed  Google Scholar 

  84. Fischetti, V. A. (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens, Int. J. Med. Microbiol., 300, 357–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fischetti, V. A. (2005) Bacteriophage lytic enzymes: novel anti-infectives, Trends Microbiol., 13, 491–496.

    Article  CAS  PubMed  Google Scholar 

  86. Pires, D. P., Oliveira, H., Melo, L. D., Sillankorva, S., and Azeredo, J. (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications, Appl. Microbiol. Biotechnol., 100, 2141–2151.

    Article  CAS  PubMed  Google Scholar 

  87. Delbruck, M. (1940) The growth of bacteriophage and lysis of the host, J. Gen. Physiol., 23, 643–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Krueger, A. P. (1931) The sorption of bacteriophage by living and dead susceptible bacteria. I. Equilibrium conditions, J. Gen. Physiol., 14, 493–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Clokie, M. R. J., and Kropinski, A. M. (2009) Bacteriophages: Methods and Protocols, Humana Press, New York.

    Google Scholar 

  90. Gallet, R., Kannoly, S., and Wang, I. N. (2011) Effects of bacteriophage traits on plaque formation, BMC Microbiol., 11, 181.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wiggins, B. A., and Alexander, M. (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems, Appl. Environ. Microbiol., 49, 19–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G., and Norris, J. S. (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy, J. Virol., 76, 5557–5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Abedon, S. (2011) Phage therapy pharmacology: calculating phage dosing, Adv. Appl. Microbiol., 77, 1–40.

    Article  PubMed  Google Scholar 

  94. Payne, R. J., and Jansen, V. A. (2001) Understanding bacteriophage therapy as a density-dependent kinetic process, J. Theor. Biol., 208, 37–48.

    Article  CAS  PubMed  Google Scholar 

  95. Kazi, M., and Annapure, U. S. (2016) Bacteriophage biocontrol of foodborne pathogens, J. Food Sci. Technol., 53, 1355–1362.

    Article  PubMed  Google Scholar 

  96. Sulakvelidze, A. (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens, J. Sci. Food Agric., 93, 3137–3146.

    Article  CAS  PubMed  Google Scholar 

  97. Guerrero-Ferreira, R. C., Viollier, P. H., Ely, B., Poindexter, J. S., Georgieva, M., Jensen, G. J., and Wright, E. R. (2011) Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus, Proc. Natl. Acad. Sci. USA, 108, 9963–9968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barr, J. J., Auro, R., Furlan, M., Whiteson, K. L., Erb, M. L., Pogliano, J., Stotland, A., Wolkowicz, R., Cutting, A. S., Doran, K. S., Salamon, P., Youle, M., and Rohwer, F. (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity, Proc. Natl. Acad. Sci. USA, 110, 10771–10776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fraser, J. S., Maxwell, K. L., and Davidson, A. R. (2007) Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr. Opin. Microbiol., 10, 382–387.

    Article  CAS  PubMed  Google Scholar 

  100. Fraser, J. S., Yu, Z., Maxwell, K. L., and Davidson, A. R. (2006) Ig-like domains on bacteriophages: a tale of promiscuity and deceit, J. Mol. Biol., 359, 496–507.

    Article  CAS  PubMed  Google Scholar 

  101. McPartland, J., and Rothman-Denes, L. B. (2009) The tail sheath of bacteriophage N4 interacts with the Escherichia coli receptor, J. Bacteriol., 191, 525–532.

    Article  CAS  PubMed  Google Scholar 

  102. Chan, J. Z., Millard, A. D., Mann, N. H., and Schafer, H. (2014) Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like roseophage specific genes, Front. Microbiol., 5, 506.

    PubMed  PubMed Central  Google Scholar 

  103. Knirel, Y. A., Prokhorov, N. S., Shashkov, A. S., Ovchinnikova, O. G., Zdorovenko, E. L., Liu, B., Kostryukova, E. S., Larin, A. K., Golomidova, A. K., and Letarov, A. V. (2015) Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s, J. Bacteriol., 197, 905–912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hu, B., Margolin, W., Molineux, I. J., and Liu, J. (2015) Structural remodeling of bacteriophage T4 and host membranes during infection initiation, Proc. Natl. Acad. Sci. USA, 112, E4919–4928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, J., Chen, C. Y., Shiomi, D., Niki, H., and Margolin, W. (2011) Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli, Virology, 417, 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Andres, D., Hanke, C., Baxa, U., Seul, A., Barbirz, S., and Seckler, R. (2010) Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro, J. Biol. Chem., 285, 36768–36775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Molineux, I. J. (2006) The T7 group, in The Bacteriophages (Calendar, R., ed.) 2nd Edn., Oxford University Press, Oxford-New York, pp. 277–301.

  108. Parent, K. N., Erb, M. L., Cardone, G., Nguyen, K., Gilcrease, E. B., Porcek, N. B., Pogliano, J., Baker, T. S., and Casjens, S. R. (2014) OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella, Mol. Microbiol., 92, 47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scholl, D., Adhya, S., and Merril, C. (2005) Escherichia coli K1′s capsule is a barrier to bacteriophage T7, Appl. Environ. Microbiol., 71, 4872–4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scholl, D., and Merril, C. (2005) The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli, J. Bacteriol., 187, 8499–8503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhan, L., Wang, S., Guo, Y., Jin, Y., Duan, J., Hao, Z., Lv, J., Qi, X., Hu, L., Chen, L., Kreiswirth, B. N., Zhang, R., Pan, J., Wang, L., and Yu, F. (2017) Outbreak by hypermucoviscous Klebsiella pneumoniae ST11 isolates with carbapenem resistance in a tertiary hospital in China, Front. Cell Infect. Microbiol., 7, 182.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pan, Y. J., Lin, T. L., Chen, C. C., Tsai, Y. T., Cheng, Y. H., Chen, Y. Y., Hsieh, P. F., Lin, Y. T., and Wang, J. T. (2017) Klebsiella phage PhiK64-1 encodes multiple depolymerases for multiple host capsular types, J. Virol., 91, e02457–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Drulis-Kawa, Z., Majkowska-Skrobek, G., and Maciejewska, B. (2015) Bacteriophages and phage-derived proteins–application approaches, Curr. Med. Chem., 22, 1757–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Edgar, R., Rokney, A., Feeney, M., Semsey, S., Kessel, M., Goldberg, M. B., Adhya, S., and Oppenheim, A. B. (2008) Bacteriophage infection is targeted to cellular poles, Mol. Microbiol., 68, 1107–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hu, B., Margolin, W., Molineux, I. J., and Liu, J. (2013) The bacteriophage t7 virion undergoes extensive structural remodeling during infection, Science, 339, 576–579.

    Article  CAS  PubMed  Google Scholar 

  116. Comeau, A. M., Bertrand, C., Letarov, A., Tetart, F., and Krisch, H. M. (2007) Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery, Virology, 362, 384–396.

    Article  CAS  PubMed  Google Scholar 

  117. Desplats, C., and Krisch, H. M. (2003) The diversity and evolution of the T4-type bacteriophages, Res. Microbiol., 154, 259–267.

    Article  CAS  PubMed  Google Scholar 

  118. Mosig, G., and Eiserling, F. (2006) T4 and related phages: structure and development, in The Bacteriophages (Calendar, R., ed.) 2nd Edn., Oxford University Press, Oxford-New York, pp. 225–267.

    Google Scholar 

  119. Leptihn, S., Gottschalk, J., and Kuhn, A. (2016) T7 ejectosome assembly: a story unfolds, Bacteriophage, 6, e1128513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jin, Y., Sdao, S. M., Dover, J. A., Porcek, N. B., Knobler, C. M., Gelbart, W. M., and Parent, K. N. (2015) Bacteriophage P22 ejects all of its internal proteins before its genome, Virology, 485, 128–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Moak, M., and Molineux, I. J. (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions, Mol. Microbiol., 51, 1169–1183.

    Article  CAS  PubMed  Google Scholar 

  122. Davydova, E. K., Kazmierczak, K. M., and Rothman-Denes, L. B. (2003) Bacteriophage N4-coded, virion-encapsulated DNA-dependent RNA polymerase, Methods Enzymol., 370, 83–94.

    Article  CAS  PubMed  Google Scholar 

  123. Sun, L., Rossmann, M. G., and Fane, B. A. (2014) High-resolution structure of a virally encoded DNA-translocating conduit and the mechanism of DNA penetration, J. Virol., 88, 10276–10279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Xu, J., Gui, M., Wang, D., and Xiang, Y. (2016) The bacteriophage varphi29 tail possesses a pore-forming loop for cell membrane penetration, Nature, 534, 544–547.

    Article  CAS  PubMed  Google Scholar 

  125. Cumby, N., Reimer, K., Mengin-Lecreulx, D., Davidson, A. R., and Maxwell, K. L. (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97, Mol. Microbiol., 96, 437–447.

    Article  CAS  PubMed  Google Scholar 

  126. Molineux, I. J., and Panja, D. (2013) Popping the cork: mechanisms of phage genome ejection, Nat. Rev. Microbiol., 11, 194–204.

    Article  CAS  PubMed  Google Scholar 

  127. Foster, T. J. (2005) Immune evasion by staphylococci, Nat. Rev. Microbiol., 3, 948–958.

    Article  CAS  PubMed  Google Scholar 

  128. Nordstrom, K., and Forsgren, A. (1974) Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus, J. Virol., 14, 198–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pedruzzi, I., Rosenbusch, J. P., and Locher, K. P. (1998) Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein, FEMS Microbiol. Lett., 168, 119–125.

    Article  CAS  PubMed  Google Scholar 

  130. Riede, I., and Eschbach, M. L. (1986) Evidence that TraT interacts with OmpA of Escherichia coli, FEBS Lett., 205, 241–245.

    Article  CAS  PubMed  Google Scholar 

  131. Uhl, M. A., and Miller, J. F. (1996) Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay, EMBO J., 15, 1028–1036.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Beier, D., Fuchs, T. M., Graeff-Wohlleben, H., and Gross, R. (1996) Signal transduction and virulence regulation in Bordetella pertussis, Microbiologia, 12, 185–196.

    CAS  PubMed  Google Scholar 

  133. Liu, M., Deora, R., Doulatov, S. R., Gingery, M., Eiserling, F. A., Preston, A., Maskell, D. J., Simons, R. W., Cotter, P. A., Parkhill, J., and Miller, J. F. (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage, Science, 295, 2091–2094.

    Article  CAS  PubMed  Google Scholar 

  134. Stummeyer, K., Schwarzer, D., Claus, H., Vogel, U., Gerardy-Schahn, R., and Muhlenhoff, M. (2006) Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages, Mol. Microbiol., 60, 1123–1135.

    Article  CAS  PubMed  Google Scholar 

  135. Kennedy, L., and Sutherland, I. W. (1994) Gellan lyases–novel polysaccharide lyases, Microbiology, 140, 3007–3013.

    Article  CAS  PubMed  Google Scholar 

  136. Sutherland, I. W. (1995) Polysaccharide lyases, FEMS Microbiol. Rev., 16, 323–347.

    Article  CAS  PubMed  Google Scholar 

  137. Sutherland, I. W. (1987) Xanthan lyases–novel enzymes found in various bacterial species, J. Gen. Microbiol., 133, 3129–3134.

    CAS  PubMed  Google Scholar 

  138. Sutherland, I. W., Hughes, K. A., Skillman, L. C., and Tait, K. (2004) The interaction of phage and biofilms, FEMS Microbiol. Lett., 232, 1–6.

    Article  CAS  PubMed  Google Scholar 

  139. Hynes, W. L., Hancock, L., and Ferretti, J. J. (1995) Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity, Infect. Immun., 63, 3015–3020.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. McClean, D. (1941) Studies on diffusing factors: the hyaluronidase activity of testicular extracts, bacterial culture filtrates and other agents that increase tissue permeability, Biochem. J., 35, 159–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kjems, E. (1955) Studies on streptococcal bacteriophages. I. Technique of isolating phage-producing strains, Acta Pathol. Microbiol. Scand., 36, 433–440.

    Article  CAS  PubMed  Google Scholar 

  142. Benchetrit, L. C., Gray, E. D., and Wannamaker, L. W. (1977) Hyaluronidase activity of bacteriophages of group A streptococci, Infect. Immun., 15, 527–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Destoumieux-Garzon, D., Duquesne, S., Peduzzi, J., Goulard, C., Desmadril, M., Letellier, L., Rebuffat, S., and Boulanger, P. (2005) The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 beta-hairpin region in the recognition mechanism, Biochem. J., 389, 869–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Meyer, J. R., Dobias, D. T., Weitz, J. S., Barrick, J. E., Quick, R. T., and Lenski, R. E. (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda, Science, 335, 428–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burmeister, A. R., Lenski, R. E., and Meyer, J. R. (2016) Host coevolution alters the adaptive landscape of a virus, Proc. R. Soc. Lond. Ser. B Biol. Sci., 283, 20161528.

    Article  CAS  Google Scholar 

  146. Morita, M., Fischer, C. R., Mizoguchi, K., Yoichi, M., Oda, M., Tanji, Y., and Unno, H. (2002) Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an ompC null mutant of Escherichia coli O157:H7, FEMS Microbiol. Lett., 216, 243–248.

    Article  CAS  PubMed  Google Scholar 

  147. Sandmeier, H. (1994) Acquisition and rearrangement of sequence motifs in the evolution of bacteriophage tail fibres, Mol. Microbiol., 12, 343–350.

    Article  CAS  PubMed  Google Scholar 

  148. Buth, S. A., Menin, L., Shneider, M. M., Engel, J., Boudko, S. P., and Leiman, P. G. (2015) Structure and biophysical properties of a triple-stranded beta-helix comprising the central spike of bacteriophage T4, Viruses, 7, 4676–4706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Letarov, A., Manival, X., Desplats, C., and Krisch, H. M. (2005) gpwac of the T4-type bacteriophages: structure, function, and evolution of a segmented coiled-coil protein that controls viral infectivity, J. Bacteriol., 187, 1055–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. George, D. G., Yeh, L. S., and Barker, W. C. (1983) Unexpected relationships between bacteriophage lambda hypothetical proteins and bacteriophage T4 tail-fiber proteins, Biochem. Biophys. Res. Commun., 115, 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  151. Trojet, S. N., Caumont-Sarcos, A., Perrody, E., Comeau, A. M., and Krisch, H. M. (2011) The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage’s host specificity, Genome Biol. Evol., 3, 674–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tetart, F., Desplats, C., Kutateladze, M., Monod, C., Ackermann, H. W., and Krisch, H. M. (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages, J. Bacteriol., 183, 358–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yoichi, M., Abe, M., Miyanaga, K., Unno, H., and Tanji, Y. (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7, J. Biotechnol., 115, 101–107.

    Article  CAS  PubMed  Google Scholar 

  154. Kulikov, E., Kropinski, A. M., Golomidova, A., Lingohr, E., Govorun, V., Serebryakova, M., Prokhorov, N., Letarova, M., Manykin, A., Strotskaya, A., and Letarov, A. (2012) Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_ EcoP_ G7C, Virology, 426, 93–99.

    Article  CAS  PubMed  Google Scholar 

  155. Plasterk, R. H., Brinkman, A., and Van de Putte, P. (1983) DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems, Proc. Natl. Acad. Sci. USA, 80, 5355–5358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grundy, F. J., and Howe, M. M. (1984) Involvement of the invertible G segment in bacteriophage mu tail fiber biosynthesis, Virology, 134, 296–317.

    Article  CAS  PubMed  Google Scholar 

  157. Johnson, R. C. (1991) Mechanism of site-specific DNA inversion in bacteria, Curr. Opin. Genet. Dev., 1, 404-411.

    Article  CAS  PubMed  Google Scholar 

  158. Guo, H., Arambula, D., Ghosh, P., and Miller, J. F. (2014) Diversity-generating retroelements in phage and bacterial genomes, Microbiol. Spectr., 2, doi: 10.1128/microbiolspec.MDNA3-0029-2014.

    Google Scholar 

  159. Toussaint, A. (2013) Transposable Mu-like phages in Firmicutes: new instances of divergence generating retroelements, Res. Microbiol., 164, 281–287.

    Article  CAS  PubMed  Google Scholar 

  160. Ye, Y. (2014) Identification of diversity-generating retroelements in human microbiomes, Int. J. Mol. Sci., 15, 14234–14246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D., and Bushman, F. D. (2012) Hypervariable loci in the human gut virome, Proc. Natl. Acad. Sci. USA, 109, 3962–3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fokine, A., Zhang, Z., Kanamaru, S., Bowman, V. D., Aksyuk, A. A., Arisaka, F., Rao, V. B., and Rossmann, M. G. (2013) The molecular architecture of the bacteriophage T4 neck, J. Mol. Biol., 425, 1731–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stockdale, S. R., Mahony, J., Courtin, P., Chapot-Chartier, M. P., Van Pijkeren, J. P., Britton, R. A., Neve, H., Heller, K. J., Aideh, B., Vogensen, F. K., and Van Sinderen, D. (2013) The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization, J. Biol. Chem., 288, 5581–5590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gallet, R., Lenormand, T., and Wang, I. N. (2012) Phenotypic stochasticity protects lytic bacteriophage populations from extinction during the bacterial stationary phase, Evolution, 66, 3485–3494.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Storms, Z. J., and Sauvageau, D. (2014) Evidence that the heterogeneity of a T4 population is the result of heritable traits, PLoS One, 9, e116235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Fisher, R. A., Gollan, B., and Helaine, S. (2017) Persistent bacterial infections and persister cells, Nat. Rev. Microbiol., 5, 453–464.

    Article  CAS  Google Scholar 

  167. Langenscheid, J., Killmann, H., and Braun, V. (2004) A FhuA mutant of Escherichia coli is infected by phage T1-independent of TonB, FEMS Microbiol. Lett., 234, 133–137.

    Article  CAS  PubMed  Google Scholar 

  168. Sayers, J. (2006) Bacteriophage T5, in The Bacteriophages (Calendar, R., ed.) 2nd Edn., Oxford University Press, Oxford-New York, pp. 268–276.

    Google Scholar 

  169. Andres, D., Roske, Y., Doering, C., Heinemann, U., Seckler, R., and Barbirz, S. (2012) Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system, Mol. Microbiol., 83, 1244–1253.

    Article  CAS  PubMed  Google Scholar 

  170. Porcek, N. B., and Parent, K. N. (2015) Key residues of S. flexneri OmpA mediate infection by bacteriophage Sf6, J. Mol. Biol., 427, 1964–1976.

    Article  CAS  PubMed  Google Scholar 

  171. Javed, M. A., van Alphen, L. B., Sacher, J., Ding, W., Kelly, J., Nargang, C., Smith, D. F., Cummings, R. D., and Szymanski, C. M. (2015) A receptor-binding protein of Campylobacter jejuni bacteriophage NCTC 12673 recognizes flagellin glycosylated with acetamidino-modified pseudaminic acid, Mol. Microbiol., 95, 101–115.

    Article  CAS  PubMed  Google Scholar 

  172. Xu, D., Zhang, J., Liu, J., Xu, J., Zhou, H., Zhang, L., Zhu, J., and Kan, B. (2014) Outer membrane protein OmpW is the receptor for typing phage VP5 in the Vibrio cholerae O1 El Tor biotype, J. Virol., 88, 7109–7111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Beczala, A., Ovchinnikova, O. G., Datta, N., Mattinen, L., Knapska, K., Radziejewska-Lebrecht, J., Holst, O., and Skurnik, M. (2015) Structure and genetic basis of Yersinia similis serotype O:9 O-specific polysaccharide, Innate Immun., 21, 3–16.

    Article  PubMed  CAS  Google Scholar 

  174. Kim, M., Kim, S., Park, B., and Ryu, S. (2014) Core lipopolysaccharide-specific phage SSU5 as an auxiliary component of a phage cocktail for Salmonella biocontrol, Appl. Environ. Microbiol., 80, 1026–1034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Marti, R., Zurfluh, K., Hagens, S., Pianezzi, J., Klumpp, J., and Loessner, M. J. (2013) Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC, Mol. Microbiol., 87, 818–834.

    Article  CAS  PubMed  Google Scholar 

  176. Kvitko, B. H., Cox, C. R., DeShazer, D., Johnson, S. L., Voorhees, K. J., and Schweizer, H. P. (2012) phiX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity, BMC Microbiol., 12, 289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kim, M., and Ryu, S. (2012) Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar typhimurium, Mol. Microbiol., 86, 411–425.

    Article  CAS  PubMed  Google Scholar 

  178. Kiljunen, S., Datta, N., Dentovskaya, S. V., Anisimov, A. P., Knirel, Y. A., Bengoechea, J. A., Holst, O., and Skurnik, M. (2011) Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage phiA1122, J. Bacteriol., 193, 4963–4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Turska-Szewczuk, A., Pietras, H., Pawelec, J., Mazur, A., and Russa, R. (2010) Morphology and general characteristics of bacteriophages infectious to Robinia pseudoacacia mesorhizobia, Curr. Microbiol., 61, 315–321.

    Article  CAS  PubMed  Google Scholar 

  180. Ricci, V., and Piddock, L. J. (2010) Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry, Appl. Environ. Microbiol., 76, 1704–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Begum, Y. A., Chakraborty, S., Chowdhury, A., Ghosh, A. N., Nair, G. B., Sack, R. B., Svennerholm, A. M., and Qadri, F. (2010) Isolation of a bacteriophage specific for CS7-expressing strains of enterotoxigenic Escherichia coli, J. Med. Microbiol., 59, 266–272.

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, J., Li, W., Zhang, Q., Wang, H., Xu, X., Diao, B., Zhang, L., and Kan, B. (2009) The core oligosaccharide and thioredoxin of Vibrio cholerae are necessary for binding and propagation of its typing phage VP3, J. Bacteriol., 191, 2622–2629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hong, J., Kim, K. P., Heu, S., Lee, S. J., Adhya, S., and Ryu, S. (2008) Identification of host receptor and receptor-binding module of a newly sequenced T5-like phage EPS7, FEMS Microbiol. Lett., 289, 202–209.

    Article  CAS  PubMed  Google Scholar 

  184. Hernandez-Sanchez, J., Bautista-Santos, A., Fernandez, L., Bermudez-Cruz, R. M., Uc-Mass, A., Martinez-Penafiel, E., Martinez, M. A., Garcia-Mena, J., Guarneros, G., and Kameyama, L. (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages, Arch. Virol., 153, 1271–1280.

    Article  CAS  PubMed  Google Scholar 

  185. Rabsch, W., Ma, L., Wiley, G., Najar, F. Z., Kaserer, W., Schuerch, D. W., Klebba, J. E., Roe, B. A., Laverde Gomez, J. A., Schallmey, M., Newton, S. M., and Klebba, P. E. (2007) FepA-and TonB-dependent bacteriophage H8: receptor binding and genomic sequence, J. Bacteriol., 189, 5658–5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ko, Y. T. (2005) The receptor of an oyster juice-borne coliphage OJ367 in the outer membrane of Salmonella derby, J. Microbiol. Immunol. Infect., 38, 399–408.

    CAS  PubMed  Google Scholar 

  187. Budzik, J. M., Rosche, W. A., Rietsch, A., and O’Toole, G. A. (2004) Isolation and characterization of a generalized transducing phage for Pseudomonas aeruginosa strains PAO1 and PA14, J. Bacteriol., 186, 3270–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. German, G. J., and Misra, R. (2001) The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage, J. Mol. Biol., 308, 579–585.

    Article  CAS  PubMed  Google Scholar 

  189. Ho, T. D., and Slauch, J. M. (2001) OmpC is the receptor for Gifsy-1 and Gifsy-2 bacteriophages of Salmonella, J. Bacteriol., 183, 1495–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nesper, J., Kapfhammer, D., Klose, K. E., Merkert, H., and Reidl, J. (2000) Characterization of Vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis, J. Bacteriol., 182, 5097–5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Traurig, M., and Misra, R. (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12, FEMS Microbiol. Lett., 181, 101–108.

    Article  CAS  PubMed  Google Scholar 

  192. Sechaud, L., Rousseau, M., Fayard, B., Callegari, M. L., Quenee, P., and Accolas, J. P. (1992) Comparative study of 35 bacteriophages of Lactobacillus helveticus: morphology and host range, Appl. Environ. Microbiol., 58, 1011–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Sao-Jose, C., Baptista, C., and Santos, M. A. (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1, J. Bacteriol., 186, 8337–8346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Letarov.

Additional information

Original Russian Text © A. V. Letarov, E. E. Kulikov, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 153-208.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letarov, A.V., Kulikov, E.E. Adsorption of bacteriophages on bacterial cells. Biochemistry Moscow 82, 1632–1658 (2017). https://doi.org/10.1134/S0006297917130053

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917130053

Keywords

Navigation