Skip to main content
Log in

Properties of bacterial and archaeal branched-chain amino acid aminotransferases

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metab- olism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyri- doxal 5′-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is imple- mented via the “lock and key” mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine for- mation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal tempera- ture, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAT:

aspartate aminotransferase

BCAA:

branched-chain amino acid

BCAT:

branched-chain amino acid aminotransferase

DAAT:

D-amino acid transaminase

eBCAT:

BCAT from E. coli

GDH:

glutamate dehydrogenase

MtBCAT:

BCAT from Mycobacterium tuberculosis

PLP:

pyri-doxal 5’-phosphate

PMP:

pyridoxamine 5’-phosphate

TA:

transaminase

Ts-BcAT:

BCAT from Thermococcus sp. CKU-1

TUZN1299:

BCAT from Thermoproteus uzoniensis

VMUT0738:

BCAT from Vulcanisaeta moutnovskia

References

  1. Vallee, B. L., and Falchuk, K. H. (1993) The biochemical basis of zinc physiology, Physiol. Rev., 73, 79–118.

    Article  CAS  PubMed  Google Scholar 

  2. Chubukov, V., Gerosa, L., and Kochanowski, K., and Sauer, U. (2014) Coordination of microbial metabolism, Nat. Rev. Microbiol., 12, 327–340.

    Article  CAS  PubMed  Google Scholar 

  3. Schiroli, D., and Peracchi, A. (2015) A subfamily of PLP-dependent enzymes specialized in handling terminal amines, Biochim. Biophys. Acta, 1854, 1200–1211.

    Article  CAS  PubMed  Google Scholar 

  4. Percudani, R., and Peracchi, A. (2009) The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families, BMC Bioinformatics, 10, 1–8.

    Article  CAS  Google Scholar 

  5. Percudani, R., and Peracchi, A. (2003) A genomic overview of pyridoxal-phosphate-dependent enzymes, EMBO Rep., 4, 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grishin, N. V., Phillips, M. A., and Goldsmith, E. J. (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases, Protein Sci., 4, 1291–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schneider, G., Kack, H., and Lindqvist, Y. (2000) The manifold of vitamin B6 dependent enzymes, Structure, 8, 1–6.

    Article  Google Scholar 

  8. Rudat, J., Brucher, B. R., and Syldatk, C. (2012) Transaminases for the synthesis of enantiopure beta-amino acids, AMB Express, 2, 1–10.

    Article  CAS  Google Scholar 

  9. Eliot, A. C., and Kirsch, J. F. (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations, Annu. Rev. Biochem., 73, 383–415.

    Article  CAS  PubMed  Google Scholar 

  10. Toney, M. D. (2011) Controlling reaction specificity in pyridoxal phosphate enzymes, Biochim. Biophys. Acta, 1814, 1407–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. John, R. A. (1995) Pyridoxal phosphate-dependent enzymes, Biochim. Biophys. Acta, 1248, 81–96.

    Article  PubMed  Google Scholar 

  12. Hayashi, H. (1995) Pyridoxal enzymes mechanistic diversity and uniformity, J. Biochem., 118, 463–473.

    Article  CAS  PubMed  Google Scholar 

  13. Jansonius, J. N. (1998) Structure evolution and action of vitamin B6-dependent enzymes, Curr. Opin. Struct. Biol., 8, 759–769.

    Article  CAS  PubMed  Google Scholar 

  14. Braunstein, A. E., and Kritzmann, M. G. (1937) Formation and breakdown of amino acids by inter-molec-ular transfer of amino group, Nature, 140, 503–504.

    Article  Google Scholar 

  15. Cooper, A. J., and Meister, A. (1989) An appreciation of Professor Alexander E. Braunstein. The discovery and scope of enzymatic transamination, Biochimie, 71, 387–404.

    Article  CAS  PubMed  Google Scholar 

  16. Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., Van den Bergh, T., Joosten, H.-J., Berglund, P., Hohne, M., and Bornscheuer, U. T. (2015) Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications, Biotechnol. Adv., 33, 566–604.

    Article  CAS  PubMed  Google Scholar 

  17. Fuchs, M., Farnberger, J. E., and Kroutil, W. (2015) The industrial age of biocatalytic transamination, Eur. J. Org. Chem., 32, 6965–6982.

    Article  CAS  Google Scholar 

  18. Hutson, S. (2001) Structure and function of branched-chain aminotransferases, Prog. Nucl. Acid. Res. Mol. Biol., 70, 175–206.

    Article  CAS  Google Scholar 

  19. Deng, Y., Liu, J., Zheng, Q., Li, Q., Kallenbach, N. R., and Lu, M. (2008) A heterospecific leucine zipper tetramer, Chem. Biol., 15, 908–919.

    Article  CAS  PubMed  Google Scholar 

  20. Duan, Y., Li, F., Li, Y., Tang, Y., Kong, X., Feng, Z., Anthony, T. G., Watford, M., Hou, Y., Wu, G., and Yin, Y. (2016) The role of leucine and its metabolites in protein and energy metabolism, Amino Acids, 48, 41–51.

    Article  CAS  PubMed  Google Scholar 

  21. Danson, M. J., Lamble, H. J., and Hough, D. W. (2007) Archaea: Molecular and Cellular Biology, ASM Press, Washington DC, pp. 260–287.

    Book  Google Scholar 

  22. Amorim Franco, T. M., Hegde, S., and Blanchard, J. S. (2016) Chemical mechanism of the branched-chain aminotransferase IlvE from Mycobacterium tuberculosis, Biochemistry, 55, 6295–6303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, S., Zeng, X., Ren, M., Mao, X., and Qiao, S. (2017) Novel metabolic and physiological functions of branched chain amino acids: a review, J. Anim. Sci. Biotechnol., 8, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Murima, P., McKinney, J. D., and Pethe, K. (2014) Targeting bacterial central metabolism for drug development, Chem. Biol., 21, 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  25. Amadasi, A., Bertoldi, M., Contestabile, R., Bettati, S., Cellini, B., Di Salvo, M. L., Borri-Voltattorni, C., Bossa, F., and Mozzarelli, A. (2007) Pyridoxal 5'-phosphate enzymes as targets for therapeutic agents, Curr. Med. Chem., 14, 1291–1324.

    Article  CAS  PubMed  Google Scholar 

  26. Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G. A., Tate, J., and Bateman, A. (2016) The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res., 44, D279–D285.

    Article  CAS  PubMed  Google Scholar 

  27. Zaitseva, J., Lu, J., Olechoski, K. L., and Lamb, A. L. (2006) Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa, J. Biol. Chem., 281, 33441–33449.

    Article  CAS  PubMed  Google Scholar 

  28. Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense, Nature, 414, 562–565.

    Article  CAS  PubMed  Google Scholar 

  29. Hwang, B.-Y., Cho, B.-K., Yun, H., Koteshwar, K., and Kim, B.-G. (2005) Revisit of aminotransferase in the genomic era and its application to biocatalysis, J. Mol. Catal. B Enzym., 37, 47–55.

    Article  CAS  Google Scholar 

  30. Koszelewski, D., Lavandera, I., Clay, D., Rozzell, D., and Kroutil, W. (2008) Asymmetric synthesis of optically pure pharmacologically relevant amines employing ?-transami-nases, Adv. Synth. Catal., 350, 2761–2766.

    Article  CAS  Google Scholar 

  31. Littlechild, J. A. (2015) Enzymes from extreme environments and their industrial applications, Front. Bioeng. Biotechnol., 161, 1–9.

    Google Scholar 

  32. Goldberg, J. M., and Kirsch, J. F. (1996) The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis, Biochemistry, 35, 5280–5291.

    Article  CAS  PubMed  Google Scholar 

  33. Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P. (1984) Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure, J. Mol. Biol., 174, 497–525.

    Article  CAS  PubMed  Google Scholar 

  34. Toney, M. D., and Kirsch, J. F. (1989) Direct Brensted analysis of the restoration of activity to a mutant enzyme by exogenous amines, Science, 243, 1485–1488.

    Article  CAS  PubMed  Google Scholar 

  35. Toney, M. D., and Kirsch, J. F. (1992) Brensted analysis of aspartate aminotransferase via exogenous catalysis of reactions of an inactive mutant, Protein Sci., 1, 107–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao, R. Z., Ding, W. J., Yu, J. G., Fang, W. H., and Liu, R. Z. (2008) Theoretical studies on pyridoxal 5'-phos-phate-dependent transamination of alpha-amino acids, J. Comput. Chem., 29, 1919–1929.

    Article  CAS  PubMed  Google Scholar 

  37. Toney, M. D., and Kirsch, J. F. (1991) The K258R mutant of aspartate aminotransferase stabilizes the quinonoid intermediate, J. Biol. Chem., 266, 23900–23903.

    CAS  PubMed  Google Scholar 

  38. Karsten, W. E., and Cook, P. F. (2009) Detection of a gemdiamine and a stable quinonoid intermediate in the reaction catalyzed by serine-glyoxylate aminotransferase from Hyphomicrobium methylovorum, Biochim. Biophys. Acta, 1790, 575–580.

    Article  CAS  PubMed  Google Scholar 

  39. Gehring, H. (1984) Transfer of C alpha-hydrogen of glutamate to coenzyme of aspartate aminotransferase during transamination reaction, Biochemistry, 23, 6335–6340.

    Article  CAS  PubMed  Google Scholar 

  40. Rishavy, M. A., and Cleland, W. W. (2000) 13C and 15N kinetic isotope effects on the reaction of aspartate aminotransferase and the tyrosine-225 to phenylalanine mutant, Biochemistry, 39, 7546–7551.

    Article  CAS  PubMed  Google Scholar 

  41. Spies, M. A., and Toney, M. D. (2003) Multiple hydrogen kinetic isotope effects for enzymes catalyzing exchange with solvent: application to alanine racemase, Biochemistry, 42, 5099–5107.

    Article  CAS  PubMed  Google Scholar 

  42. Saito, M., Nishimura, K., Wakabayashi, S., Kurihara, T., and Nagata, Y. (2007) Purification of branched-chain amino acid aminotransferase from Helicobacter pylori NCTC 11637, Amino Acids, 33, 445–449.

    Article  CAS  PubMed  Google Scholar 

  43. Koide, Y., Honma, M., and Shimomura, T. (1977) Branched chain amino acid aminotransferase of Pseudomonas sp., Agric. Biol. Chem., 41, 1171–1177.

    CAS  Google Scholar 

  44. Goto, M., Miyahara, I., Hayashi, H., Kagamiyama, H., and Hirotsu, K. (2003) Crystal structures of branchedchain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme, Biochemistry, 42, 3725–3733.

    Article  CAS  PubMed  Google Scholar 

  45. Soda, K., Yoshimura, T., and Esaki, N. (2001) Stereospecificity for the hydrogen transfer of pyridoxal enzyme reactions, Chem. Rec., 1, 373–384.

    Article  CAS  PubMed  Google Scholar 

  46. Dunathan, H. C. (1966) Conformation and reaction specificity in pyridoxal phosphate enzymes, Proc. Natl. Acad. Sci. USA, 55, 712–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruan, J., Hu, J., Yin, A., Wu, W., Cong, X., Feng, X., and Li, S. (2012) Structure of the branched-chain aminotransferase from Streptococcus mutants, Acta Crystallogr. Sect. D, 68, 996–1002.

    Article  CAS  Google Scholar 

  48. Rudman, D., and Meister, A. (1953) Transamination in Escherichia coli, J. Biol. Chem., 200, 591–604.

    CAS  PubMed  Google Scholar 

  49. Feldman, L. I., and Gunsalus, I. C. (1950) The occurrence of a wide variety of transaminases in bacteria, J. Biol. Chem., 187, 821–830.

    CAS  PubMed  Google Scholar 

  50. Gelfand, D. H., and Steinberg, R. A. (1977) Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases, J. Bacteriol., 130, 429–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jensen, R. A., and Calhoun, D. H. (1981) Intracellular roles of microbial aminotransferases: overlap enzymes across different biochemical pathways, Crit. Rev. Microbiol., 8, 229–266.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, M. D., Liu, L., Wang, B. M., and Berg, C. M. (1987) Cloning and characterization of Escherichia coli K-12 alanine-valine transaminase (avtA) gene, J. Bacteriol., 169, 4228–4234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kline, E. L., Brown, C. S., Coleman, W. G., Jr., and Umbarger, H. E. (1974) Regulation of isoleucine-valine biosynthesis in an ilvDAC deletion strain of Escherichia coli K-12, Biochem. Biophys. Res. Commun., 57, 1144–1151.

    Article  CAS  PubMed  Google Scholar 

  54. Kline, E. L., Manross, D. N., Jr., and Warwick, M. L. (1977) Multivalent regulation of isoleucine-valine transaminase in an Escherichia coli K-12 ilvA deletion strain, J. Bacteriol., 130, 951–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Harris, R. A., and Sokatch, J. R. (2000) Branched-chain amino acids (Part B) N324, in Methods in Enzymology, Academic Press, London, p. 535.

    Google Scholar 

  56. Rej, R. (1982) A convenient continuous-rate spectrophoto-metric method for determination of amino acid substrate specificity of aminotransferases: application to isoenzymes of aspartate aminotransferase, Anal. Biochem., 119, 205–210.

    Article  CAS  PubMed  Google Scholar 

  57. Duggan, D. E., and Wechsler, J. A. (1973) An assay for transaminase B enzyme activity in Escherichia coli K-12, Anal. Biochem., 51, 67–79.

    Article  CAS  PubMed  Google Scholar 

  58. Taylor, R. T., and Jenkins, W. T. (1966) Leucine amino-transferase I. Colorimetric assays, J. Biol. Chem., 241, 4391–4395.

    CAS  PubMed  Google Scholar 

  59. Lee-Peng, F.-C., Hermodson, M. A., and Kohlhaw, G. B. (1979) Transaminase B from Escherichia coli: quaternary structure, amino-terminal sequence, substrate specificity, and absence of a separate valine-a-ketoglutarate activity, J. Bacteriol., 139, 339–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Inoue, K., Kuramitsu, S., Aki, K., Watanabe, Y., Takagi, T., Nishigai, M., Ikai, A., and Kagamiyama, H. (1988) Branched-chain amino acid aminotransferase of Escherichia coli: overproduction and properties, J. Biochem., 104, 777–784.

    Article  CAS  PubMed  Google Scholar 

  61. Toney, M. D. (2014) Aspartate aminotransferase: an old dog teaches new tricks, Arch. Biochem. Biophys., 544, 119–127.

    Article  CAS  PubMed  Google Scholar 

  62. Yu, X., Wang, X., and Engel, P. C. (2014) The specificity and kinetic mechanism of branched-chain amino acid aminotransferase from Escherichia coli studied with a new improved coupled assay procedure and the enzyme’s potential for biocatalysis, FEBS J., 281, 391–400.

    Article  CAS  PubMed  Google Scholar 

  63. Norton, J. E., and Sokatch, J. R. (1970) Purification and partial characterization of the branched chain amino acid transaminase of Pseudomonas aeruginosa, Biochim. Biophys. Acta, 206, 261–269.

    Article  CAS  PubMed  Google Scholar 

  64. Tachiki, T., and Tochikura, T. (1973) Separation of L-leucine-pyruvate and L-leucine-alpha-ketoglutarate transaminases in Acetobacter suboxydans and identification of their reaction products, Agric. Biol. Chem., 37, 1439–1448.

    Article  CAS  Google Scholar 

  65. Tachiki, T., and Tochikura, T. (1976) Purification and characterization of L-leucine-alpha-ketoglutarate transaminase from Acetobacter suboxydans, Agric. Biol. Chem., 40, 2187–2192.

    CAS  Google Scholar 

  66. Yvon, M., Chambellon, E., Bolotin, A., and Roudot-Algaron, F. (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763, Appl. Environ. Microbiol., 66, 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thage, B. V., Rattray, F. P., Laustsen, M. W., Ardo, Y., Barkholt, V., and Hourberg, U. (2004) Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. paracasei CHCC 2115, J. Appl. Microbiol., 96, 593–602.

    Article  CAS  PubMed  Google Scholar 

  68. Kanda, M., Hori, K., Kurotsu, T., Ohgishi, K., Hanawa, T., and Saito, Y. (1995) Purification and properties of branched chain amino acid aminotransferase from gramicidin S-producing Bacillus brevis, J. Nutr. Sci. Vitaminol., 41, 51–60.

    Article  CAS  PubMed  Google Scholar 

  69. Venos, E. S., Knodel, M. H., Radford, C. L., and Berger, B. J. (2004) Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis, BMC Microbiol., 4, 1–14.

    Article  CAS  Google Scholar 

  70. Madsen, S. M., Beck, H. C., Rawn, P., Vrang, A., Hansen, A. M., and Israelsen, H (2002) Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme, Appl. Environ. Microbiol., 68, 4007–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Berger, B. J., English, S., Chan, G., and Knodel, M. H. (2003) Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis, J. Bacteriol., 185, 2418–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong, H. C., and Lessie, T. G. (1979) Branched chain amino acid aminotransferase isoenzymes of Pseudomonas cepacia, Arch. Microbiol., 120, 223–229.

    Article  CAS  PubMed  Google Scholar 

  73. Massey, L. K., Conrad, R. S., and Sokatch, J. R. (1974) Regulation of leucine catabolism in Pseudomonas putida, J. Bacteriol., 118, 112–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, C. D., Lin, C. H., Chuankhayan, P., Huang, Y. C., Hsieh, Y. C., Huang, T. F., Guan, H. H., Liu, M. Y., Chang, W. C., and Chen, C. J. (2012) Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans with a-ketoisocaproate and L-glutamate suggest the radiation resistance of this enzyme for catalysis, J. Bacteriol., 194, 6206–6216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lipscomb, E. L., Horton, H. R., and Armstrong, F. B. (1974) Molecular weight, subunit structure, and amino acid composition of the branched chain amino acid aminotransferase of Salmonella typhimurium, Biochemistry, 13, 2070–2077.

    Article  CAS  PubMed  Google Scholar 

  76. Feild, M. J., Nguyen, D. C., and Armstrong, F. B. (1989) Amino acid sequence of Salmonella typhimurium branchedchain amino acid aminotransferase, Biochemistry, 28, 5306–5310.

    Article  CAS  PubMed  Google Scholar 

  77. Xing, R. Y., and Whitman, W. B. (1991) Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp., J. Bacteriol., 173, 2086–2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xing, R. Y., and Whitman, W. B. (1992) Characterization of amino acid aminotransferases of Methanococcus aeolicus, J. Bacteriol., 174, 541–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boyko, K. M., Stekhanova, T. N., Nikolaeva, A. Y., Mardanov, A. V., Rakitin, A. L., Ravin, N. V., Bezsudnova, E. Yu., and Popov, V. O. (2016) First structure of archaeal branched-chain amino acid aminotransferase from Thermoproteus uzoniensis specific for L-amino acids and Ramines, Extremophiles, 20, 215–225.

    Article  CAS  PubMed  Google Scholar 

  80. Bezsudnova, E. Yu., Stekhanova, T. N., Suplatov, D. A., Mardanov, A. V., Ravin, N. V., and Popov, V. O. (2016) Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis, Arch. Biochem. Biophys., 607, 27–36.

    Article  CAS  PubMed  Google Scholar 

  81. Stekhanova, T. N., Rakitin, A. L., Mardanov, A. V., Bezsudnova, E. Yu., and Popov, V. O. (2017) A novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia, Enzyme Microb. Technol., 96, 127–134.

    Article  CAS  PubMed  Google Scholar 

  82. Uchida, Y., Hayashi, H., Washio, T., Yamasaki, R., Kato, S., and Oikawa, T. (2014) Cloning and characterization of a novel fold-type I branched-chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1, Extremophiles, 18, 589–602.

    Article  CAS  PubMed  Google Scholar 

  83. Hayashi, H., Inoue, K., Nagata, T., Kuramitsu, S., and Kagamiyama, H. (1993) Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase, Biochemistry, 32, 12229–12239.

    Article  CAS  PubMed  Google Scholar 

  84. Oue, S., Okamoto, A., Nakai, Y., Nakahira, M., Shibatani, T., Hayashi, H., and Kagamiyama, H. (1997) Paracoccus denitrificans aromatic amino acid aminotransferase: a model enzyme for the study of dual substrate recognition mechanism, J. Biochem., 121, 161–171.

    Article  CAS  PubMed  Google Scholar 

  85. Conway, M. E., and Hutson, S. M. (2000) Mammalian branched-chain aminotransferases, Methods Enzymol., 324, 355–365.

    Article  CAS  PubMed  Google Scholar 

  86. Braunstein, A. E. (1973) The Enzymes (Boyer, P. D., ed.) 3rd Edn., Academic Press, New York, pp. 379–471.

  87. Beeler, T., and Churchich, J. E. (1976) Reactivity of the phosphopyridoxal groups of cystathionase, J. Biol. Chem., 251, 5267–5271.

    CAS  PubMed  Google Scholar 

  88. Ward, J., and Wohlgemuth, R. (2010) High-yield biocat-alytic amination reactions in organic synthesis, Curr. Org. Chem., 14, 1–12.

    Article  Google Scholar 

  89. Li, T., Kootstra, A. B., and Fotheringham, I. G. (2002) Nonproteinogenic a-amino acid preparation using equilibrium shifted transamination, Org. Proc. Res. Dev., 6, 533–538.

    Article  CAS  Google Scholar 

  90. Bommarius, A. S., Schwarm, M., and Drauz, K. (1998) Biocatalysis to amino acid-based chiral pharmaceuticals–examples and perspectives, J. Mol. Catal. B Enzym., 5, 1–11.

    Article  CAS  Google Scholar 

  91. Krix, G., Bommarius, A. S., Drauz, K., Kottenhahn, M., Schwarm, M., and Kula, M. R. (1997) Enzymatic reduction of alpha-keto acids leading to L-amino acids, D-or L-hydroxy acids, J. Biotech., 53, 29–39.

    Article  CAS  Google Scholar 

  92. Xian, M., Alaux, S., Sagot, E., and Gefflaut, T. (2007) Chemoenzymatic synthesis of glutamic acid analogues: substrate specificity and synthetic applications of branched chain aminotransferase from Escherichia coli, J. Org. Chem., 72, 7560–7566.

    Article  CAS  PubMed  Google Scholar 

  93. Faure, S., Jensen, A. A., Maurat, V., Gu, X., Sagot, E., Aitken, D. J., Bolte, J., Gefflaut, T., and Bunch, L. (2006) Stereoselective chemoenzymatic synthesis of the four stereoisomers of L-2-(2-carboxy-cyclobutyl)glycine and pharmacological characterization at human excitatory amino acid transporter subtypes 1, 2, and 3, J. Med. Chem., 49, 6532–6538.

    Article  CAS  PubMed  Google Scholar 

  94. Okada, K., Hirotsu, K., Sato, M., Hayashi, H., and Kagamiyama, H. (1997) Three-dimensional structure of Escherichia coli branched-chain amino acid aminotrans-ferase at 2.5 Å resolution, J. Biochem., 121, 637–641.

    Article  CAS  PubMed  Google Scholar 

  95. Okada, K., Hirotsu, K., Hayashi, H., and Kagamiyama, H. (2001) Structures of Escherichia coli branched-chain amino acid aminotransferase and its complexes with 4-methyl-valerate and 2-methylleucine: induced fit and substrate recognition of the enzyme, Biochemistry, 40, 7453–7463.

    Article  CAS  PubMed  Google Scholar 

  96. Castell, A., Mille, C., and Unge, T. (2010) Structural analysis of mycobacterial branched-chain aminotrans-ferase: implications for inhibitor design, Acta Crystallogr. Sect. D, 66, 549–557.

    Article  CAS  Google Scholar 

  97. Tremblay, L. W., and Blanchard, J. S. (2009) The 1.9 Å structure of the branched-chain amino-acid transaminase (IlvE) from Mycobacterium tuberculosis, Acta Crystallogr. Sect. F, 65, 1071–1077.

    Article  CAS  Google Scholar 

  98. Yennawar, N., Dunbar, J., Conway, M., Hutson, S., and Farber, G. (2001) The structure of human mitochondrial branched-chain aminotransferase, Acta Crystallogr. Sect. D, 57, 506–515.

    Article  CAS  Google Scholar 

  99. Kochhar, S., and Christen, P. (1992) Mechanism of racemization of amino acids by aspartate aminotrans-ferase, Eur. J. Biochem., 203, 563–569.

    Article  CAS  PubMed  Google Scholar 

  100. Shaw, J. P., Petsko, G. A., and Ringe, D. (1997) Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9 Å resolution, Biochemistry, 36, 1329–1342.

    Article  CAS  PubMed  Google Scholar 

  101. Hohne, M., Schatzle, S., Jochen, H., Robins, K., and Bornscheuer, U. T. (2010) Rational assignment of key motifs for function guides in silico enzyme identification, Nat. Chem. Biol., 6, 807–813.

    Article  PubMed  CAS  Google Scholar 

  102. Skalden, L., Thomsen, M., Hohne, M., Bornscheuer, U. T., and Hinrichs, W. (2015) Structural and biochemical characterization of the dual substrate recognition of the (R)-selective amine transaminase from Aspergillus fumiga-tus, FEBS J., 282, 407–415.

    Article  CAS  PubMed  Google Scholar 

  103. Peisach, D., Chipman, D. M., Van Ophem, P. W., Manning, J. M., and Ringe, D. (1998) Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase, Biochemistry, 37, 4958–4967.

    Article  CAS  PubMed  Google Scholar 

  104. Iwasaki, A., Matsumoto, K., Hasegawa, J., and Yasohara, Y. (2012) A novel transaminase, (R)-amine:pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning, Appl. Microbiol. Biotechnol., 93, 1563–1573.

    Article  CAS  PubMed  Google Scholar 

  105. Hirotsu, K., Goto, M., Okamoto, A., and Miyahara, I. (2005) Dual substrate recognition of aminotransferases, Chem. Rec., 5, 160–172.

    Article  CAS  PubMed  Google Scholar 

  106. Goto, M., Omi, R., Miyahara, I., Hosono, A., Mizuguchi, H., Hayashi, H., Kagamiyama, H., and Hirotsu, K. (2004) Crystal structures of glutamine:phenylpyruvate aminotransferase from Thermus thermophilus HB8: induced fit and substrate recognition, J. Biol. Chem., 279, 16518–16525.

    Article  CAS  PubMed  Google Scholar 

  107. Koshland, D. E. (1995) The key-lock theory and the induced fit theory, Angew. Chem., 33, 2375–2378.

    Article  Google Scholar 

  108. Karsten, W. E., Reyes, Z. L., Bobyk, K. D., Cook, P. F., and Chooback, L. (2011) Mechanism of the aromatic amino-transferase encoded by the Aro8 gene from Saccharomyces cerevisiae, Arch. Biochem. Biophys., 516, 67–74.

    Article  CAS  PubMed  Google Scholar 

  109. Jiang, J., Chen, X., Zhang, D., Wu, Q., and Zhu, D. (2015) Characterization of (R)-selective amine transaminases identified by silico motif sequence blast, Appl. Microbial. Biotechnol., 99, 2613–2621.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Bezsudnova.

Additional information

Original Russian Text © E. Yu. Bezsudnova, K. M. Boyko, V. O. Popov, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 33-70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezsudnova, E.Y., Boyko, K.M. & Popov, V.O. Properties of bacterial and archaeal branched-chain amino acid aminotransferases. Biochemistry Moscow 82, 1572–1591 (2017). https://doi.org/10.1134/S0006297917130028

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917130028

Keywords

Navigation