Skip to main content
Log in

Electron transfer through the acceptor side of photosystem I: Interaction with exogenous acceptors and molecular oxygen

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review considers the state-of-the-art on mechanisms and alternative pathways of electron transfer in photosynthetic electron transport chains of chloroplasts and cyanobacteria. The mechanisms of electron transport control between photosystems (PS) I and II and the Calvin–Benson cycle are considered. The redistribution of electron fluxes between the noncyclic, cyclic, and pseudocyclic pathways plays an important role in the regulation of photosynthesis. Mathematical modeling of light-induced electron transport processes is considered. Particular attention is given to the electron transfer reactions on the acceptor side of PS I and to interactions of PS I with exogenous acceptors, including molecular oxygen. A kinetic model of PS I and its interaction with exogenous electron acceptors has been developed. This model is based on experimental kinetics of charge recombination in isolated PS I. Kinetic and thermodynamic parameters of the electron transfer reactions in PS I are scrutinized. The free energies of electron transfer between quinone acceptors A1A/A1B in the symmetric redox cofactor branches of PS I and iron–sulfur clusters FX, FA, and FB have been estimated. The second-order rate constants of electron transfer from PS I to external acceptors have been determined. The data suggest that byproduct formation of superoxide radical in PS I due to the reduction of molecular oxygen in the A1 site (Mehler reaction) can exceed 0.3% of the total electron flux in PS I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A0A and A0B:

dimers of chlorophyll a molecules that are primary electron acceptors in cofactor A and B branches

A1A and A1B:

phylloquinone molecules that are secondary electron acceptors in A and B branches

Asc–•:

monodehydroascorbate

AscH:

ascorbate anion (fully reduced state)

CBC:

Calvin–Benson cycle

Chl, chlorophyll:

Cl2NQ, 2,3-dichloro-1,4-naphthoquinone

DCPIP:

2,6-dichlorophenolindophenol

DMF:

dimethylformamide

E m :

midpoint potential

Fc:

ferrocene

Fc+:

ferrocenium cation

Fd:

ferredoxin

Fld:

flavodoxin

FNR:

ferredoxin:NADP oxidoreductase

FQR:

ferredoxin:quinone reductase

FX, FA, and FB:

iron–sulfur clusters

FX–core:

complexes depleted of iron–sulfur FA/FB clusters

ΔG:

free energy

K m :

Michaelis constant

menB :

mutant strain of Synechocystis sp. PCC 6803 cyanobacterium

MV:

methyl viologen

NDH:

NADH dehydrogenase

O •–2 :

superoxide anion radical

P700:

special pair of chlorophyll a molecules in PS I

Pc:

plastocyanin

PGR5 :

proton gradient regulation protein gene 5 (proton gradient regulation 5)

PGRL1 :

PGR5-like protein 1 gene (PGR5-like protein 1)

PhQ:

phylloquinone

PQ:

plastoquinone

PQH2:

plastoquinol

PS I (II):

photosystem I (II)

PSA:

photosynthetic apparatus

PsaA, PsaB, PsaC, PsaD and PsaE:

subunits within photosystem I

ROS:

reactive oxygen species

SCE:

saturated calomel electrode

SHE:

standard hydrogen electrode

WT:

wild-type Synechocystis sp. PCC 6803 cyanobacterium

References

  1. Allen, J. F. (2003) Cyclic, pseudocyclic and noncyclic pho-tophosphorylation: new links in the chain, Trends Plant Sci., 8, 15–19.

    Article  CAS  PubMed  Google Scholar 

  2. Joliot, P., and Joliot, A. (2006) Cyclic electron flow in C3 plants, Biochim. Biophys. Acta, 1757, 362–368.

    Article  CAS  PubMed  Google Scholar 

  3. Miyake, C. (2010) Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthe-sis: molecular mechanisms and physiological functions, Plant Cell Physiol., 51, 1951–1963.

    Article  CAS  PubMed  Google Scholar 

  4. Shikanai, T. (2007) Cyclic electron transport around pho-tosystem I: genetic approaches, Annu. Rev. Plant Biol., 58, 199–217.

    Article  CAS  PubMed  Google Scholar 

  5. Breyton, C., Nandha, B., Johnson, G. N., Joliot, P., and Finazzi, G. (2006) Redox modulation of cyclic electron flow around photosystem I in C3 plants, Biochemistry, 45, 13465–13475.

    Article  CAS  PubMed  Google Scholar 

  6. Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., Tasaka, M., and Shikanai, T. (2004) Cyclic electron flow around photosystem I is essential for photo-synthesis, Nature, 429, 579–582.

    Article  CAS  PubMed  Google Scholar 

  7. Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., and Minagawa, J. (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis, Nature, 464, 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  8. Strand, D. D., Fisher, N., and Kramer, D. M. (2016) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts, in Chloroplasts: Current Research and Future Trends (Kirchhoff, H., ed.) Caister Academic Press, pp. 89–100.

    Google Scholar 

  9. Sazanov, L. A., Burrows, P., and Nixon, P. J. (1996) Detection and characterization of a complex I-like NADH-specific dehydrogenase from pea thylakoids, Biochem. Soc. Trans., 24, 739–743.

    Article  CAS  PubMed  Google Scholar 

  10. Peng, L., Shimizu, H., and Shikanai, T. (2008) The chloro-plast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis, J. Biol. Chem., 283, 34873–34879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peng, L., Fukao, Y., Fujiwara, M., Takami, T., and Shikanai, T. (2009) Efficient operation of NAD(P)H dehy-drogenase requires supercomplex formation with photosys-tem I via minor LHCI in Arabidopsis, Plant Cell, 21, 3623–3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shikanai, T., Endo, T., Hashimoto, T., Yamada, Y., Asada, K., and Yokota, A. (1998) Directed disruption of the tobac-co ndhB gene impairs cyclic electron flow around photosys-tem I, Proc. Natl. Acad. Sci. USA, 95, 9705–9709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tagawa, K., Tsujimoto, H. Y., and Arnon, D. I. (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis, Proc. Natl. Acad. Sci. USA, 49, 567–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamamoto, H., Kato, H., Shinzaki, Y., Horiguchi, S., Shikanai, T., Hase, T., Endo, T., Nishioka, M., Makino, A., Tomizawa, K.-I., and Miyake, C. (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants–stimulation of CEF-PSI enhances non-photo-chemical quenching of Chl fluorescence in transplastomic tobacco, Plant Cell Physiol., 47, 1355–1371.

    Article  CAS  PubMed  Google Scholar 

  15. Hald, S., Nandha, B., Gallois, P., and Johnson, G. N. (2008) Feedback regulation of photosynthetic electron transport by NADP(H) redox poise, Biochim. Biophys. Acta, 1777, 433–440.

    Article  CAS  PubMed  Google Scholar 

  16. Hald, S., Pribil, M., Leister, D., Gallois, P., and Johnson, G. N. (2008) Competition between linear and cyclic elec-tron flow in plants deficient in photosystem I, Biochim. Biophys. Acta, 1777, 1173–1183.

    Article  CAS  PubMed  Google Scholar 

  17. Bendall, D. S., and Manasse, R. S. (1995) Cyclic pho-tophosphorylation and electron transport, Biochim. Biophys. Acta, 1229, 23–38.

    Article  Google Scholar 

  18. Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., and Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotec-tion in Arabidopsis, Cell, 110, 361–371.

    Article  CAS  PubMed  Google Scholar 

  19. DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schunemann, D., Finazzi, G., Joliot, P., Barbato, R., and Leister, D. (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis, Cell, 132, 273–285.

    Article  CAS  PubMed  Google Scholar 

  20. Hertle, A. P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U., and Leister, D. (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosyn-thetic cyclic electron flow, Mol. Cell, 49, 511–523.

    Article  CAS  PubMed  Google Scholar 

  21. Munekage, Y. N., Genty, B., and Peltier, G. (2008) Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana, Plant Cell. Physiol., 49, 1688–1698.

    Article  CAS  PubMed  Google Scholar 

  22. Suorsa, M., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala, M., Paakkarinen, V., Tikkanen, M., Jansson, S., Aro, E., Jarvi, S., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala, M., Kangasjarvi, S., Paakkarinen, V., Tikkanen, M., Jansson, S., and Aro, E. (2012) Proton gra-dient regulation 5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluc-tuating light conditions, Plant Cell, 24, 2934–2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benz, J. P., Lintala, M., Soll, J., Mulo, P., and Bolter, B. (2010) A new concept for ferredoxin-NADP(H) oxidoreductase bind-ing to plant thylakoids, Trends Plant Sci., 15, 608–613.

    Article  CAS  PubMed  Google Scholar 

  24. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozeki, H. (1986) Chloroplast gene organization deduced from complete sequence of liverwort marchantia polymorpha chloroplast DNA, Nature, 322, 572–574.

    Article  CAS  Google Scholar 

  25. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., and Sugiura, M. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression, EMBO J., 5, 2043–2049.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Battchikova, N., Eisenhut, M., and Aro, E.-M. (2011) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles, Biochim. Biophys. Acta, 1807, 935–944.

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa, T., and Mi, H. (2007) Cyanobacterial NADPH dehydrogenase complexes, Photosynth. Res., 93, 69–77.

    Article  CAS  PubMed  Google Scholar 

  28. Endo, T., Shikanai, T., Sato, F., and Asada, K. (1998) NAD(P)H dehydrogenase-dependent, antimycin A-sensi-tive electron donation to plastoquinone in tobacco chloro-plasts, Plant Cell Physiol., 39, 1226–1231.

    Article  CAS  Google Scholar 

  29. Joet, T., Cournac, L., Horvath, E. M., Medgyesy, P., and Peltier, G. (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I, Plant Physiol., 125, 1919–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubota, H., Sakurai, I., Katayama, K., Mizusawa, N., Ohashi, S., Kobayashi, M., Zhang, P., Aro, E.-M., and Wada, H. (2010) Purification and characterization of pho-tosystem I complex from Synechocystis sp. PCC 6803 by expressing histidine-tagged subunits, Biochim. Biophys. Acta, 1797, 98–105.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, G. N. (2011) Physiology of PSI cyclic electron transport in higher plants, Biochim. Biophys. Acta, 1807, 384–389.

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto, H., Peng, L., Fukao, Y., and Shikanai, T. (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehy-drogenase-like complex in Arabidopsis, Plant Cell, 23, 1480–1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leister, D., and Shikanai, T. (2013) Complexities and pro-tein complexes in the antimycin A-sensitive pathway of cyclic electron flow in plants, Front. Plant Sci., 4, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Burrows, P. A., Sazanov, L. A., Svab, Z., Maliga, P., and Nixon, P. J. (1998) Identification of a functional respirato-ry complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid Ndh genes, EMBO J., 17, 868–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motohashi, K., and Hisabori, T. (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target pro-teins in the thylakoid lumen, J. Biol. Chem., 281, 35039–35047.

    Article  CAS  PubMed  Google Scholar 

  36. Balsera, M., Schurmann, P., and Buchanan, B. B. (2016) Redox regulation in chloroplasts, in Chloroplasts. Current Research and Future Trends (Kirchhoff, H., ed.) Caister Academic Press, pp. 187–208.

    Google Scholar 

  37. Dietz, K.-J., and Pfannschmidt, T. (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression, Plant Physiol., 155, 1477–1485.

    Article  CAS  PubMed  Google Scholar 

  38. Woodrow, I. E., and Berry, J. A. (1988) Enzymatic regula-tion of photosynthetic CO2, fixation in C3 plants, Ann. Rev. Plant Physiol. Plant Mol. Biol., 39, 533–594.

    Article  CAS  Google Scholar 

  39. Andersson, I. (2007) Catalysis and regulation in rubisco, J. Exp. Bot., 59, 1555–1568.

    Article  CAS  Google Scholar 

  40. Michelet, L., Zaffagnini, M., Morisse, S., Sparla, F., Perez-Perez, M. E., Francia, F., Danon, A., Marchand, C. H., Fermani, S., Trost, P., and Lemaire, S. D. (2013) Redox regulation of the Calvin–Benson cycle: something old, something new, Front. Plant Sci., 4, 470.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Asada, K. (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess pho-tons, Ann. Rev. Plant Physiol. Plant Mol. Biol., 50, 601–639.

    Article  CAS  Google Scholar 

  42. Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol., 141, 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Badger, M. R., Von Caemmerer, S., Ruuska, S., and Nakano, H. (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase, Philos. Trans. R. Soc. London, 355, 1433–1446.

    Article  CAS  Google Scholar 

  44. Ort, D. R., and Baker, N. R. (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr. Opin. Plant. Biol., 5, 193–198.

    Article  CAS  PubMed  Google Scholar 

  45. Egorova, E. A., and Bukhov, N. G. (2006) Mechanisms and functions of photosystem I-related alternative electron transport pathways in chloroplasts, Russ. J. Plant Physiol., 53, 571–582.

    Article  CAS  Google Scholar 

  46. Kuvykin, I. V., Ptushenko, V. V., Vershubskii, A. V., and Tikhonov, A. N. (2011) Regulation of electron transport in C3 plant chloroplasts in situ and in silico: short-term effects of atmospheric CO2 and O2, Biochim. Biophys. Acta, 1807, 336–347.

    Article  CAS  PubMed  Google Scholar 

  47. Kramer, D. M., Avenson, T. J., and Edwards, G. E. (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions, Trends Plant Sci., 9, 349–357.

    Article  CAS  PubMed  Google Scholar 

  48. Eberhard, S., Finazzi, G., and Wollman, F.-A. (2008) The dynamics of photosynthesis, Annu. Rev. Genet., 42, 463–515.

    Article  CAS  PubMed  Google Scholar 

  49. Allakhverdiev, S. I., and Murata, N. (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803, Biochim. Biophys. Acta, 1657, 23–32.

    Article  CAS  PubMed  Google Scholar 

  50. Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W. (2012) Modulation of photosynthetic energy conver-sion efficiency in nature: from seconds to seasons, Photosynth. Res., 113, 75–88.

    Article  CAS  PubMed  Google Scholar 

  51. Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M., and Wada, M. (2002) Chloroplast avoidance movement reduces photodamage in plants, Nature, 420, 829–832.

    Article  CAS  PubMed  Google Scholar 

  52. Murata, N., Allakhverdiev, S. I., and Nishiyama, Y. (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, alpha-tocopherol, non-photochemi-cal quenching, and electron transport, Biochim. Biophys. Acta, 1817, 1127–1133.

    Article  CAS  PubMed  Google Scholar 

  53. Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., and Harbinson, J. (2012) Photosynthetic control of electron transport and the regulation of gene expression, J. Exp. Bot., 63, 1637–1661.

    Article  CAS  PubMed  Google Scholar 

  54. Tikkanen, M., Grieco, M., Nurmi, M., Rantala, M., Suorsa, M., and Aro, E.-M. (2012) Regulation of the photosynthetic apparatus under fluctuating growth light, Philos. Trans. R. Soc. Lond. Biol., 367, 3486–3493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tikkanen, M., Mekala, N. R., and Aro, E.-M. (2014) Photosystem II photoinhibition-repair cycle protects pho-tosystem I from irreversible damage, Biochim. Biophys. Acta, 1837, 210–215.

    Article  CAS  PubMed  Google Scholar 

  56. Li, Z., Wakao, S., Fischer, B. B., and Niyogi, K. K. (2009) Sensing and responding to excess light, Annu. Rev. Plant Biol., 60, 239–260.

    Article  CAS  PubMed  Google Scholar 

  57. Govindjee (1995) Sixty-three years since Kautsky: chloro-phyll a fluorescence, Aust. J. Plant Physiol., 22, 131–160.

    Article  CAS  Google Scholar 

  58. Stirbet, A., and Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient, J. Photochem. Photobiol. B, 104, 236–257.

    Article  CAS  PubMed  Google Scholar 

  59. Stirbet, A., and Govindjee (2012) Chlorophyll a fluores-cence induction: a personal perspective of the thermal phase, the J-I-P rise, Photosynth. Res., 113, 15–61.

    Article  CAS  PubMed  Google Scholar 

  60. Rochaix, J.-D. (2014) Regulation and dynamics of the light-harvesting system, Annu. Rev. Plant Biol., 65, 287–309.

    Article  CAS  PubMed  Google Scholar 

  61. Tikhonov, A. N. (2013) pH-dependent regulation of elec-tron transport and ATP synthesis in chloroplasts, Photosynth. Res., 116, 511–534.

    Article  CAS  PubMed  Google Scholar 

  62. Tikhonov, A. N. (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview, Photosynth. Res., 125, 65–94.

    Article  CAS  PubMed  Google Scholar 

  63. Kangasjarvi, S., Tikkanen, M., Durian, G., and Aro, E.-M. (2014) Photosynthetic light reactions–an adjustable Hub in basic production and plant immunity signaling, Plant Physiol. Biochem., 81, 128–134.

    Article  CAS  PubMed  Google Scholar 

  64. Edwards, D., and Walker, D. (1986) Photosynthesis in C3-and C4-Plants: Mechanism and Regulation [Russian translation], Mir, Moscow.

    Google Scholar 

  65. Ivanov, B., and Khorobrykh, S. (2003) Participation of photosynthetic electron transport in production and scav-enging of reactive oxygen species, Antioxid. Redox Signal., 5, 43–53.

    Article  CAS  PubMed  Google Scholar 

  66. Wardman, P. (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data, 18, 1637.

    Article  CAS  Google Scholar 

  67. Mehler, A. H. (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents, Arch. Biochem. Biophys., 33, 65–77.

    Article  CAS  PubMed  Google Scholar 

  68. Trubitsin, B. V., Mamedov, M. D., Semenov, A. Y., and Tikhonov, A. N. (2014) Interaction of ascorbate with pho-tosystem I, Photosynth. Res., 122, 215–231.

    Article  CAS  PubMed  Google Scholar 

  69. Asada, K., Kiso, K., and Yoshikawa, K. (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination, J. Biol. Chem., 249, 2175–2181.

    CAS  PubMed  Google Scholar 

  70. Noctor, G., and Foyer, C. H. (1998) Ascorbate and gluta-tione: keeping active oxygen under control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279.

    Article  CAS  PubMed  Google Scholar 

  71. Foyer, C. H., and Noctor, G. (2011) Ascorbate and glu-tathione: the heart of the redox hub, Plant Physiol., 155, 2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rubin, A., and Riznichenko, G. (2014) Mathematical Biophysics, Springer, Boston.

    Book  Google Scholar 

  73. Tikhonov, A. N. (2016) Modeling electron and proton transport in chloroplasts, in Chloroplasts: Current Research and Future Trends (Kirchhoff, H., ed.) Caister Academic Press, Norfolk, UK, pp. 101–134.

    Google Scholar 

  74. Tikhonov, A. N., and Vershubskii, A. V. (2014) Computer modeling of electron and proton transport in chloroplasts, Biosystems, 121, 1–21.

    Article  CAS  PubMed  Google Scholar 

  75. Kuvykin, I. V., Vershubskii, A. V., Ptushenko, V. V., and Tikhonov, A. N. (2008) Oxygen as an alternative electron acceptor in the photosynthetic electron transport chain of C3 plants, Biochemistry (Moscow), 73, 1063–1075.

    Article  CAS  Google Scholar 

  76. Matsuoka, T., Tanaka, S., and Ebina, K. (2016) Reduced minimum model for the photosynthetic induction process-es in photosystem I, J. Photochem. Photobiol. B, 160, 364–375.

    Article  CAS  PubMed  Google Scholar 

  77. Santabarbara, S., Heathcote, P., and Evans, M. C. W. (2005) Modelling of the electron transfer reactions in pho-tosystem I by electron tunnelling theory: the phylloqui-nones bound to the PsaA and the PsaB reaction centre sub-units of PS I are almost isoenergetic to the iron-sulfur clus-ter FX, Biochim. Biophys. Acta, 1708, 283–310.

    Article  CAS  PubMed  Google Scholar 

  78. Milanovsky, G. E., Petrova, A. A., Cherepanov, D. A., and Semenov, A. Y. (2017) Kinetic modeling of electron trans-fer reactions in photosystem I complexes of various struc-tures with substituted quinone acceptors, Photosynth. Res., 133, 185–199.

    Article  CAS  PubMed  Google Scholar 

  79. Kirchhoff, H. (2008) Significance of protein crowding, order and mobility for photosynthetic membrane func-tions, Biochem. Soc. Trans., 36, 967–970.

    Article  CAS  PubMed  Google Scholar 

  80. Kirchhoff, H. (2014) Diffusion of molecules and macro-molecules in thylakoid membranes, Biochim. Biophys. Acta, 1837, 495–502.

    Article  CAS  PubMed  Google Scholar 

  81. Kirchhoff, H., Hall, C., Wood, M., Herbstova, M., Tsabari, O., Nevo, R., Charuvi, D., Shimoni, E., and Reich, Z. (2011) Dynamic control of protein diffusion within the granal thylakoid lumen, Proc. Natl. Acad. Sci. USA, 108, 20248–20253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Polle, A., and Junge, W. (1986) The slow rise of the flash-light-induced alkalization by photosystem II of the sus-pending medium of thylakoids is reversibly related to thy-lakoid stacking, Biochim. Biophys. Acta, 848, 257–264.

    Article  CAS  Google Scholar 

  83. Junge, W., and Polle, A. (1986) Theory of proton flow along appressed thylakoid membranes under both non-stationary and stationary conditions, Biochim. Biophys. Acta, 848, 265–273.

    Article  CAS  Google Scholar 

  84. Cherepanov, D. A., Junge, W., and Mulkidjanian, A. Y. (2004) Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier, Biophys. J., 86, 665–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Springer, A., Hagen, V., Cherepanov, D. A., Antonenko, Y. N., and Pohl, P. (2011) Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface, Proc. Natl. Acad. Sci. USA, 108, 14461–14466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vershubskii, A. V., Trubitsin, B. V., Priklonskii, V. I., and Tikhonov, A. N. (2017) Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts, Biochim. Biophys. Acta, 1859, 388–401.

    Article  CAS  PubMed  Google Scholar 

  87. Cherepanov, D. A., Feniouk, B. A., Junge, W., and Mulkidjanian, A. Y. (2003) Low dielectric permittivity of water at the membrane interface: effect on the energy cou-pling mechanism in biological membranes, Biophys. J., 85, 1307–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cherepanov, D. A. (2004) Force oscillations and dielectric overscreening of interfacial water, Phys. Rev. Lett., 93, 266104.

    Article  PubMed  CAS  Google Scholar 

  89. Blackwell, M. F., and Whitmarsh, J. (1990) Effect of inte-gral membrane proteins on the lateral mobility of plasto-quinone in phosphatidylcholine proteoliposomes, Biophys. J., 58, 1259–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Drepper, F., Carlberg, I., Andersson, B., and Haehnel, W. (1993) Lateral diffusion of an integral membrane protein: Monte Carlo analysis of the migration of phosphorylated light-harvesting complex II in the thylakoid membrane, Biochemistry, 32, 11915–11922.

    Article  CAS  PubMed  Google Scholar 

  91. Blackwell, M., Gibas, C., Gygax, S., Roman, D., and Wagner, B. (1994) The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications, Biochim. Biophys. Acta, 1183, 533–543.

    Article  CAS  Google Scholar 

  92. Kirchhoff, H., Horstmann, S., and Weis, E. (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants, Biochim. Biophys. Acta, 1459, 148–168.

    Article  CAS  PubMed  Google Scholar 

  93. Kirchhoff, H., Mukherjee, U., and Galla, H.-J. (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone, Biochemistry, 41, 4872–4882.

    Article  CAS  PubMed  Google Scholar 

  94. Kovalenko, I. B., Abaturova, A. M., Riznichenko, G. Y., and Rubin, A. B. (2011) Computer simulation of interac-tion of photosystem I with plastocyanin and ferredoxin, Bio Systems, 103, 180–187.

    Article  CAS  PubMed  Google Scholar 

  95. Brettel, K., and Leibl, W. (2001) Electron transfer in pho-tosystem I, Biochim. Biophys. Acta, 1507, 100–114.

    Article  CAS  PubMed  Google Scholar 

  96. Fromme, P., and Mathis, P. (2004) Unraveling the photo-system I reaction center: a history, or the sum of many efforts, Photosynth. Res., 80, 109–124.

    Article  CAS  PubMed  Google Scholar 

  97. Mamedov, M., Govindjee Nadtochenko, V., and Semenov, A. (2015) Primary electron transfer processes in photosyn-thetic reaction centers from oxygenic organisms, Photosynth. Res., 125, 51–63.

    Article  CAS  PubMed  Google Scholar 

  98. Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909–917.

    Article  CAS  PubMed  Google Scholar 

  99. Mazor, Y., Borovikova, A., and Nelson, N. (2017) The structure of plant photosystem I super-complex at 2.8 Å resolution, Nat. Plants, 3, 17014.

    Article  CAS  PubMed  Google Scholar 

  100. Diaz-Quintana, A., Leibl, W., Bottin, H., and Setif, P. (1998) Electron transfer in photosystem I reaction centers follows a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin, Biochemistry, 37, 3429–3439.

    Article  CAS  PubMed  Google Scholar 

  101. Vassiliev, I. R., Jung, Y. S., Yang, F., and Golbeck, J. H. (1998) PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin, Biophys. J., 74, 2029–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Golbeck, J. H. (1999) A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. A biochemical argument for the sequence of electron trans-fer in photosystem I as FX→FA→FB→ferredoxin/flavo-doxin, Photosynth. Res., 61, 107–144.

    Article  CAS  Google Scholar 

  103. Mamedova, A. A., Mamedov, M. D., Gourovskaya, K. N., Vassiliev, I. R., Golbeck, J. H., and Semenov, A. Y. (1999) Electrometrical study of electron transfer from the termi-nal FA/FB iron-sulfur clusters to external acceptors in pho-tosystem I, FEBS Lett., 462, 421–424.

    Article  CAS  PubMed  Google Scholar 

  104. Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P., and Redding, K. (2001) Evidence for two active branches for electron transfer in photosystem I, Proc. Natl. Acad. Sci. USA, 98, 4437–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Srinivasan, N., and Golbeck, J. H. (2009) Protein–cofac-tor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in photosystem I, Biochim. Biophys. Acta, 1787, 1057–1088.

    Article  CAS  PubMed  Google Scholar 

  106. Milanovsky, G. E., Ptushenko, V. V., Cherepanov, D. A., and Semenov, A. Y. (2014) Mechanism of primary and sec-ondary ion-radical pair formation in photosystem I com-plexes, Biochemistry (Moscow), 79, 221–226.

    Article  CAS  Google Scholar 

  107. Makita, H., and Hastings, G. (2015) Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77K, FEBS Lett., 589, 1412–1417.

    Article  CAS  PubMed  Google Scholar 

  108. Sun, J., Hao, S., Radle, M., Xu, W., Shelaev, I., Nadtochenko, V., Shuvalov, V., Semenov, A., Gordon, H., Van der Est, A., and Golbeck, J. H. (2014) Evidence that histidine forms a coordination bond to the A0A and A0B chlorophylls and a second H-bond to the A1A and A1B phylloquinones in M688HPsaA and M668HPsaB variants of Synechocystis sp. PCC 6803, Biochim. Biophys. Acta, 1837, 1362–1375.

    Article  CAS  PubMed  Google Scholar 

  109. Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Shuvalov, V. A., and Semenov, A. Y. (2010) Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I, Biochim. Biophys. Acta, 1797, 1410–1420.

    Article  CAS  PubMed  Google Scholar 

  110. Vassiliev, I. R., Jung, Y. S., Mamedov, M. D., Semenov, A. Y., and Golbeck, J. H. (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in photosystem I, Biophys. J., 72, 301–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ptushenko, V. V., Cherepanov, D. A., Krishtalik, L. I., and Semenov, A. Y. (2008) Semi-continuum electrostatic cal-culations of redox potentials in photosystem I, Photosynth. Res., 97, 55–74.

    Article  CAS  PubMed  Google Scholar 

  112. Agalarov, R., and Brettel, K. (2003) Temperature depend-ence of biphasic forward electron transfer from the phyllo-quinone(s) A1 in photosystem I: only the slower phase is activated, Biochim. Biophys. Acta, 1604, 7–12.

    Article  CAS  PubMed  Google Scholar 

  113. Jordan, R., Nessau, U., and Schlodder, E. (1998) Charge recombination between the reduced iron-sulphur clusters and P700+, in Photosynthesis: Mechanisms and Effects: Volume I Proc. of the XIth Int. Congr. on Photosynthesis (Garab, G., ed.) Budapest, Hungary, August 17-22, 1998, Springer Netherlands, Dordrecht, pp. 663–666.

    Chapter  Google Scholar 

  114. Shinkarev, V. (2006) Functional modeling of electron transfer in photosynthetic reaction centers, in Photosystem I: the Light-Driven Plastocyanin:Ferredoxin Oxidoreductase (Golbeck, J. H., ed.) Springer Netherlands, Dordrecht, pp. 611–637.

    Google Scholar 

  115. Palsson, L.-O. O., Flemming, C., Gobets, B., Van Grondelle, R., Dekker, J. P., and Schlodder, E. (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wave-length antenna chlorophylls of Synechococcus elongatus, Biophys. J., 74, 2611–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shinkarev, V. P., Vassiliev, I. R., and Golbeck, J. H. (2000) A kinetic assessment of the sequence of electron transfer from FX to FA and further to FB in photosystem I: the value of the equilibrium constant between FX and FA, Biophys. J., 78, 363–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shen, G., Zhao, J., Reimer, S. K., Antonkine, M. L., Cai, Q., Weiland, S. M., Golbeck, J. H., and Bryant, D. A. (2002) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity, J. Biol. Chem., 277, 20343–20354.

    Article  CAS  PubMed  Google Scholar 

  118. Mula, S., Savitsky, A., Mobius, K., Lubitz, W., Golbeck, J. H., Mamedov, M. D., Semenov, A. Y., and Van der Est, A. (2012) Incorporation of a high potential quinone reveals that electron transfer in photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946–956.

    Article  CAS  PubMed  Google Scholar 

  119. Makita, H., Zhao, N., and Hastings, G. (2015) Time-resolved visible and infrared difference spectroscopy for the study of photosystem I with different quinones incor-porated into the A1 binding site, Biochim. Biophys. Acta, 1847, 343–354.

    Article  CAS  PubMed  Google Scholar 

  120. Petrova, A. A., Boskhomdzhieva, B. K., Milanovsky, G. E., Koksharova, O. A., Mamedov, M. D., Cherepanov, D. A., and Semenov, A. Y. (2017) Interaction of various types of photosystem I complexes with exogenous electron acceptors, Photosynth. Res., 133, 175–184.

    Article  CAS  PubMed  Google Scholar 

  121. Shinkarev, V. P., Zybailov, B., Vassiliev, I. R., and Golbeck, J. H. (2002) Modeling of the P700+ charge recombination kinetics with phylloquinone and plastoquinone-9 in the A1 site of photosystem I, Biophys. J., 83, 2885–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Makita, H., and Hastings, G. (2016) Modeling electron transfer in photosystem I, Biochim. Biophys. Acta, 1857, 723–733.

    Article  CAS  PubMed  Google Scholar 

  123. Santabarbara, S., and Zucchelli, G. (2016) Comparative kinetic and energetic modelling of phyllosemiquinone oxi-dation in photosystem I, Phys. Chem. Chem. Phys., 18, 9687–9701.

    Article  CAS  PubMed  Google Scholar 

  124. Ilan, Y. A., Meisel, D., and Czapski, G. (1974) The redox potential of the O2−O2 − system in aqueous media, Israel J. Chem., 12, 891–895.

    Article  CAS  Google Scholar 

  125. Battino, R., Rettich, T. R., and Tominaga, T. (1983) The solubility of oxygen and ozone in liquids, J. Phys. Chem. Ref. Data, 12, 163–178.

    Article  CAS  Google Scholar 

  126. Golbeck, J. H., Parrett, K. G., and McDermott, A. E. (1987) Photosystem I charge separation in the absence of center A and B. III. Biochemical characterization of a reaction center particle containing P-700 and FX, Biochim. Biophys. Acta, 893, 149–160.

    Article  CAS  Google Scholar 

  127. Torres, R. A., Lovell, T., Noodleman, L., and Case, D. A. (2003) Density functional and reduction potential calcula-tions of Fe4S4 clusters, J. Am. Chem. Soc., 125, 1923–1936.

    Article  CAS  PubMed  Google Scholar 

  128. Bashford, D. (1997) An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules: An Experience Report on the MEAD project. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Berlin-Heidelberg, pp. 233–240.

    Google Scholar 

  129. Witham, S., Takano, K., Schwartz, C., and Alexov, E. (2011) A missense mutation in CLIC2 associated with intellectual disability is predicted by in silico modeling to affect protein stability and dynamics, Proteins Struct. Funct. Bioinform., 79, 2444–2454.

    Article  CAS  Google Scholar 

  130. Ishikita, H., and Knapp, E.-W. (2003) Redox potential of quinones in both electron transfer branches of photosys-tem I, J. Biol. Chem., 278, 52002–52011.

    Article  CAS  PubMed  Google Scholar 

  131. Ishikita, H., Saenger, W., Biesiadka, J., Loll, B., and Knapp, E.-W. (2006) How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870, Proc. Natl. Acad. Sci. USA, 103, 9855–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kawashima, K., and Ishikita, H. (2017) Structural factors that alter the redox potential of quinones in cyanobacteri-al and plant photosystem I, Biochemistry, 56, 3019–3028.

    Article  CAS  PubMed  Google Scholar 

  133. Parson, W. W., and Warshel, A. (2008) Calculations of electrostatic energies in proteins using microscopic, semi-microscopic and macroscopic models and free-energy per-turbation approaches, in Biophysical Techniques in Photosynthesis (Aartsma, T. J., and Matysik, J., eds.) Springer, Netherlands, Dordrecht, pp. 401–420.

    Chapter  Google Scholar 

  134. Mitra, R., Shyam, R., Mitra, I., Miteva, M., Alexov, E., Reihle, T., Loladze, V., Makhatadze, G., Guo, H., and Ha, S. (2008) Calculating the protonation states of pro-teins and small molecules: implications to ligand–recep-tor interactions, Curr. Comp. Aided Drug Design, 4, 169–179.

    Article  CAS  Google Scholar 

  135. Ptushenko, V. V., Cherepanov, D. A., and Krishtalik, L. I. (2015) Electrostatics of the photosynthetic bacterial reaction center. protonation of Glu L 212 and Asp L 213–a new method of calculation, Biochim. Biophys. Acta, 1847, 1495–1508.

    Article  CAS  PubMed  Google Scholar 

  136. Prince, R. C., Leslie Dutton, P., and Malcolm Bruce, J. (1983) Electrochemistry of ubiquinones. Menaquinones and plastoquinones in aprotic solvents, FEBS Lett., 160, 273–276.

    Article  CAS  Google Scholar 

  137. Harris, B. J., Cheng, X., and Frymier, P. (2014) All-atom molecular dynamics simulation of a photosystem I/deter-gent complex, J. Phys. Chem. B, 118, 11633–11645.

    Article  CAS  PubMed  Google Scholar 

  138. Harris, B. J., Cheng, X., and Frymier, P. (2016) Structure and function of photosystem I-[FeFe] hydrogenase protein fusions: an all-atom molecular dynamics study, J. Phys. Chem. B, 120, 599–609.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, Y., and Ding, Y. (2016) Molecular dynamics simu-lation and bioinformatics study on chloroplast stromal ridge complex from rice (Oryza sativa L.), BMC Bioinformatics, 17, 1–12.

    Article  CAS  Google Scholar 

  140. Milanovsky, G. E., Ptushenko, V. V., Golbeck, J. H., Semenov, A. Y., and Cherepanov, D. A. (2014) Molecular dynamics study of the primary charge separation reactions in photosystem I: effect of the replacement of the axial lig-ands to the electron acceptor A0, Biochim. Biophys. Acta, 1837, 1472–1483.

    Article  CAS  PubMed  Google Scholar 

  141. Brettel, K., and Golbeck, J. H. (1995) Spectral and kinet-ic characterization of electron acceptor A1 in a photosys-tem I core devoid of iron-sulfur centers FX, FB and FA, Photosynth. Res., 45, 183–193.

    Article  CAS  PubMed  Google Scholar 

  142. Kozuleva, M. A., Petrova, A. A., Mamedov, M. D., Semenov, A. Y., and Ivanov, B. N. (2014) O2 reduction by photosystem I involves phylloquinone under steady-state illumination, FEBS Lett., 588, 4364–4368.

    Article  CAS  PubMed  Google Scholar 

  143. Kozuleva, M. A., and Ivanov, B. N. (2016) The mecha-nisms of oxygen reduction in the terminal reducing seg-ment of the chloroplast photosynthetic electron transport chain, Plant Cell Physiol., 57, 1397–1404.

    CAS  PubMed  Google Scholar 

  144. Forti, G., and Ehrenheim, A. M. (1993) The role of ascor-bic acid in photosynthetic electron transport, Biochim. Biophys. Acta, 1183, 408–412.

    Article  CAS  Google Scholar 

  145. Miyake, C., and Asada, K. (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids, Plant Cell Physiol., 35, 539–549.

    Article  CAS  Google Scholar 

  146. Grace, S., Pace, R., and Wydrzynski, T. (1995) Formation and decay of monodehydroascorbate radicals in illuminat-ed thylakoids as determined by EPR spectroscopy, Biochim. Biophys. Acta, 1229, 155–165.

    Article  Google Scholar 

  147. Ivanov, B. (2000) The competition between methyl violo-gen and monodehydroascorbate radical as electron accep-tors in spinach thylakoids and intact chloroplasts, Free Radic. Res., 33, 217–227.

    Article  CAS  PubMed  Google Scholar 

  148. Ivanov, B. N. (2014) Role of ascorbic acid in photosynthe-sis, Biochemistry (Moscow), 79, 282–289.

    Article  CAS  Google Scholar 

  149. Miyake, C., and Yokota, A. (2000) Determination of the rate of photoreduction of O2 in the water–water cycle in watermelon leaves and enhancement of the rate by limi-tation of photosynthesis, Plant Cell Physiol., 41, 335-343.

    Article  CAS  PubMed  Google Scholar 

  150. Buchanan, B. B. (1980) Role of light in the regulation of chloroplast enzymes, Annu. Rev. Plant Physiol., 31, 341–374.

    Article  CAS  Google Scholar 

  151. Buchanan, B. B. (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin sys-tem. Perspective on its discovery, present status, and future development, Arch. Biochem. Biophys., 288, 1–9.

    Article  CAS  PubMed  Google Scholar 

  152. Bottin, H., and Lagoutte, B. (1992) Ferrodoxin and flavo-doxin from the cyanobacterium Synechocystis sp. PCC 6803, Biochim. Biophys. Acta, 1101, 48–56.

    Article  CAS  PubMed  Google Scholar 

  153. Bird, C. L., and Kuhn, A. T. (1981) Electrochemistry of the viologens, Chem. Soc. Rev. R. Soc. Chem., 10, 49.

    Article  CAS  Google Scholar 

  154. Ilan, Y. A., Czapski, G., and Meisel, D. (1976) The one-electron transfer redox potentials of free radicals. I. The oxygen/superoxide system, Biochim. Biophys. Acta, 430, 209–224.

    Article  CAS  PubMed  Google Scholar 

  155. Vasudevan, D., and Wendt, H. (1995) Electroreduction of oxygen in aprotic media, J. Electroanal. Chem., 392, 69–74.

    Article  Google Scholar 

  156. Sawyer, D., Chiericato, G., and Angelis, C. A. (1982) Effects of media and electrode materials on the electrochemical reduction of dioxygen, Anal. Chem., 2, 1720–1724.

    Article  Google Scholar 

  157. Currie, D. J., and Holmes, H. L. (1966) Polarographic half-wave potentials of some 1,4-naphthoquinones, Can. J. Chem., 44, 1027–1029.

    Article  CAS  Google Scholar 

  158. Shalev, H., and Evans, D. H. (1989) Solvation of anion radicals: GAS phase vs solution, J. Am. Chem. Soc., 111, 2667–2674.

    Article  CAS  Google Scholar 

  159. Pueyo, J. J., Gomez-Moreno, C., and Mayhew, S. G. (1991) Oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from anabaena PCC 7119 and their electrostatic and covalent complexes, Eur. J. Biochem., 202, 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  160. Setif, P., and Brettel, K. (1993) Forward electron transfer from phylloquinone A1 to iron-sulfur centers in spinach photosystem I, Biochemistry, 32, 7846–7854.

    Article  CAS  PubMed  Google Scholar 

  161. Bautista, J. A., Rappaport, F., Guergova-Kuras, M., Cohen, R. O., Golbeck, J. H., Wang, J. Y., Beal, D., and Diner, B. A. (2005) Biochemical and biophysical charac-terization of photosystem I from phytoene desaturase and ζ-carotene desaturase deletion mutants of Synechocystis sp. PCC 6803: evidence for PsaA-and PsaB-side electron transport in cyanobacteria, J. Biol. Chem., 280, 20030–20041.

    Article  CAS  PubMed  Google Scholar 

  162. Setif, P. (2001) Ferredoxin and flavodoxin reduction by photosystem I, Biochim. Biophys. Acta, 1507, 161–179.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Cherepanov, A. N. Tikhonov or A. Yu. Semenov.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 11, pp. 1593–1614.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-296, October 30, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, D.A., Milanovsky, G.E., Petrova, A.A. et al. Electron transfer through the acceptor side of photosystem I: Interaction with exogenous acceptors and molecular oxygen. Biochemistry Moscow 82, 1249–1268 (2017). https://doi.org/10.1134/S0006297917110037

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917110037

Keywords

Navigation