Skip to main content
Log in

Quantitative affinity interaction of ubiquitinated and non-ubiquitinated proteins with proteasome subunit Rpn10

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recent proteomic profiling of mouse brain preparations using the ubiquitin receptor, Rpn10 proteasome subunit, as an affinity ligand revealed a representative group of proteins bound to this sorbent (Medvedev, A. E., et al. (2017) Biochemistry (Moscow), 82, 330-339). In the present study, we investigated interaction of the Rpn10 subunit of proteasomes with some of these identified proteins: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase, and histones H2A and H2B. The study revealed: (i) quantitative affinity interaction of the proteasome subunit immobilized on a Biacore-3000 optical biosensor cuvette with both the GAPDH (K d = 2.4·10–6 M) and pyruvate kinase (K d = 2.8·10–5 M); (ii) quantitative high-affinity interaction of immobilized histones H2A and H2B with the Rpn10 subunit (Kd values of 6.5·10–8 and 3.2·10–9 M, respectively). Mass spectrometric analysis revealed the presence of the ubiquitin signature (GG) only in a highly purified preparation of GAPDH. We suggest that binding (especially high-affinity binding) of non-ubiquitinated proteins to the Rpn10 proteasome subunit can both regulate the functioning of this proteasomal ubiquitin receptor (by competing with ubiquitinated substrates) and promote activation of other pathways for proteolytic degradation of proteins destined to the proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

K d :

equilibrium dissociation constant

References

  1. Hershko, A., and Ciechanover, A. (1998) The ubiquitin system, Annu. Rev. Biochem., 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  2. Hershko, A., Ciechanover, A., and Varshavsky, A. (2000) The ubiquitin system, Nature Med., 6, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, A. L., and Ciechanover, A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology, Annu. Rev. Pharmacol. Toxicol., 49, 73–96.

    Article  CAS  PubMed  Google Scholar 

  4. Kravtsova-Ivantsiv, Y., and Ciechanover, A. (2012) Noncanonical ubiquitin-based signals for proteasomal degradation, J. Cell Sci., 125, 539–548.

    Article  CAS  PubMed  Google Scholar 

  5. Buneeva, O. A., and Medvedev, A. E. (2016) The role of atypical ubiquitination in cell regulation, Biomed. Khim., 62, 496–509.

    Article  CAS  PubMed  Google Scholar 

  6. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26S protease subunit that binds ubiquitin conjugates, J. Biol. Chem., 269, 7059–7061.

    CAS  PubMed  Google Scholar 

  7. Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S. (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development, Mol. Cell. Biol., 19, 6629–6638.

    Article  Google Scholar 

  8. Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Medvedeva, M. V., Nerobkova, L. N., Kapitsa, I. G., and Zgoda, V. G. (2017) Brain mitochondrial subproteome of Rpn10-binding proteins and its changes induced by the neurotoxin MPTP and the neuroprotector isatin, Biochemistry (Moscow), 82, 330–339.

    Article  CAS  Google Scholar 

  9. Ivanov, A., Medvedev, A., Ershov, P., Molnar, A., Mezentsev, Y., Yablokov, E., Kaluzhsky, L., Gnedenko, O., Buneeva, O., Haidukevich, I., Sergeev, G., Lushchyk, A., Yantsevich, A., Medvedeva, M., Kozin, S., Popov, I., Novikova, S., Zgoda, V., Gilep, A., Usanov, S., Lisitsa, A., and Archakov, A. (2014) Protein interactomics based on direct molecular fishing on paramagnetic particles: practical realization and further SPR validation, Proteomics, 14, 2261–2274.

    Article  CAS  PubMed  Google Scholar 

  10. Buneeva, O., Gnedenko, O., Zgoda, V., Kopylov, A., Glover, V., Ivanov, A., Medvedev, A., and Archakov, A. (2010) Isatin binding proteins of rat and mouse brain: proteomic identification and optical biosensor validation, Proteomics, 10, 23–37.

    Article  CAS  PubMed  Google Scholar 

  11. Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Gnedenko, O. V., Medvedeva, M. V., Kozin, S. A., Ivanov, A. S., Zgoda, V. G., and Makarov, A. A. (2015) The effects of an endogenous non-peptide molecule isatin and hydrogen peroxide on proteomic profiling of rat brain amyloidbeta binding proteins: relevance to Alzheimer’s disease? Int. J. Mol. Sci., 16, 476–495.

    Article  Google Scholar 

  12. Scopes, R. K., and Stoter, A. (1982) Purification of all glycolytic enzymes from one muscle extract, Methods Enzymol., 90 (Pt. E), 479–490.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H., Walsh, S. T. R., and Parthun, M. R. (2008) Expanded binding specificity of the human histone chaperone NASP, Nucleic Acids Res., 36, 5763–5772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blumenfeld, N., Gonen, H., Mayer, A., Smith, C. E., Siegel, N. R., Schwartz, A. L., and Ciechanover, A. (1994) Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-“N-end rule” protein substrates, J. Biol. Chem., 269, 9574–9581.

    CAS  PubMed  Google Scholar 

  15. Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., Chang, J. W., Lee, E. K., Choi, H. W., Park, Z. Y., and Yoo, Y. J. (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart, Biochem. Biophys. Res. Commun., 357, 731–736.

    Article  CAS  PubMed  Google Scholar 

  16. Schrader, E. K., Harstad, K. G., and Matouschek, A. (2009) Targeting proteins for degradation, Nat. Chem. Biol., 10, 815–822.

    Article  Google Scholar 

  17. Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome, J. Biol. Chem., 279, 26817–26822.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Medvedev.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 9, pp. 1338-1344.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buneeva, O.A., Gnedenko, O.V., Kopylov, A.T. et al. Quantitative affinity interaction of ubiquitinated and non-ubiquitinated proteins with proteasome subunit Rpn10. Biochemistry Moscow 82, 1042–1047 (2017). https://doi.org/10.1134/S0006297917090073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917090073

Keywords

Navigation