Skip to main content
Log in

Neuroprotective effect of carnosine on primary culture of rat cerebellar cells under oxidative stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatographymass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAPH:

2,2'-azobis(2-amidinopropane)dihy-drochloride carnosine, ß-alanyl-L-histidine

CNS:

central nervous system

DCF:

dichlorofluorescein

MAPK:

mitogen-activated protein kinases

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MTT:

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

PEPT1 and PEPT2:

peptide transporters 1 and 2

ROS:

reactive oxygen species

rotenone:

(2R,6aS,12aS)-1,2,6,6a,12,12a-hexahydro-2-iso-propenyl-8,9-dimethoxychromeno[3,4-b]furo(2,3-h)chromen-6-one

References

  1. Warner, D. S., Sheng, H., and Batinic-Haberle, I. (2004) Oxidants, antioxidants and the ischemic brain, J. Exp. Biol., 207, 3221–3231.

    Article  CAS  PubMed  Google Scholar 

  2. Zuo, L., and Motherwell, M. S. (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease, Gene, 532, 18–23.

    Article  CAS  PubMed  Google Scholar 

  3. Boldyrev, A., Bulygina, E., and Makhro, A. (2004) Glutamate receptors modulate oxidative stress in neuronal cells, a mini-review, Neurotox. Res., 6, 581–587.

    Article  CAS  PubMed  Google Scholar 

  4. Boldyrev, A. A., and Kukley, M. L. (1996) Free radicals in normal and ischemic brain, Neirokhimiya, 13, 271–278.

    Google Scholar 

  5. Illarioshkin, S. N. (2003) Conformational Diseases of Brain [in Russian], Janus-K, Moscow.

    Google Scholar 

  6. Lu, Y. M., Yin, H. Z., Chiang, J., and Weiss, J. H. (1996) Ca2+-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury, J. Neurosci., 16, 5457–5465.

    CAS  PubMed  Google Scholar 

  7. Nicholls, D. G., and Scott, I. D. (1980) The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membranepotential-dependent calcium-ion efflux mechanisms, Biochem. J., 186, 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mark, L. P., Prost, R. W., Ulmer, J. L., Smith, M. M., Daniels, D. L., Strottmann, J. M., Brown, W. D., and Hacein-Bey, L. (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging, Am. J. Neuroradiol., 22, 1813–1824.

    CAS  PubMed  Google Scholar 

  9. Rafalowska, J. (2002) Experimental and human ischemia: is the penumbra present in human ischaemic stroke? Folia Neuropathol., 40, 211–217.

    PubMed  Google Scholar 

  10. Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., Gopas, J., and Nishigaki, I. (2014) Antioxidants and human diseases, Clin. Chim. Acta, 436, 332–347.

    Article  CAS  PubMed  Google Scholar 

  11. Boldyrev, A. A., Stvolinsky, S. L., and Fedorova, T. N. (2007) Carnosine: endogenous physiological corrector of antioxidative system activity, Usp. Fiziol. Nauk, 38, 57–71.

    CAS  PubMed  Google Scholar 

  12. Boldyrev, A., and Abe, H. (1999) Metabolic transformation of neuropeptide carnosine modifies its biological activity, Cell. Mol. Neurobiol., 19, 163–175.

    Article  CAS  PubMed  Google Scholar 

  13. Boldyrev, A. A. (2012) Carnosine: new concept for the function of an old molecule, Biochemistry (Moscow), 77, 313–326.

    CAS  PubMed  Google Scholar 

  14. Boldyrev, A. A., Stvolinsky, S. L., Fedorova, T. N., and Suslina, Z. A. (2010) Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials, Rejuv. Res., 13, 156–158.

    Article  CAS  Google Scholar 

  15. Dobrota, D., Fedorova, T. N., Stepanova, M. S., Babusikova, E., Statelova, D., Tatarkova, Z., Stvolinsky, S. S., and Boldyrev, A. A. (2010) Oxidative stress induced in rat brain by a combination of 3-nitropropionic acid and global ischemia, Int. J. Clin. Exp. Med., 3, 144–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Afshin-Majd, S., Khalili, M., Roghani, M., Mehranmehr, N., and Baluchnejadmojarad, T. (2015) Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in hemiparkinsonian rat, Mol. Neurobiol., 51, 1064–1070.

    Article  CAS  PubMed  Google Scholar 

  17. Fedorova, T. N., Stvolinsky, S. L., Bagyeva, G. H., Ivanova-Smolenskaia, I. A., and Illarioshkin, S. N. (2005) Neurodegenerative alterations induced by MPTP neurotoxin in senescence accelerated mice essay, Usp. Fiziol. Nauk, 36, 94–101.

    CAS  PubMed  Google Scholar 

  18. Pavlov, A. R., Revina, A. A., Dupin, A. M., Boldyrev, A. A., and Iaropolov, A. I. (1990) Interactions of carnosine and superoxide radicals in aqueous solutions, Byul. Eksp. Biol. Med., 10, 391–393.

    Google Scholar 

  19. Boldyrev, A. A., Kurella, E. G., Rubtsov, A. M., Tiulina, O. V., Shara, M., and Shentiurts, M. (1992) Direct measurement of the interaction of carnosine and its analogs with free radicals, Biokhimiya, 57, 1360–1365.

    CAS  Google Scholar 

  20. Gorbunov, N. V., and Erin, A. N. (1991) Mechanism of antioxidant action of carnosine, Byul. Eksp. Biol. Med., 111, 477–478.

    Article  CAS  Google Scholar 

  21. Tamba, M., and Torreggiani, A. (1998) A pulse radiolysis study of carnosine in aqueous solution, Int. J. Radiat. Biol., 74, 333–340.

    Article  CAS  PubMed  Google Scholar 

  22. Boldyrev, A. A., Johnson, P., Wei, Y., Tan, Y., and Carpenter, D. O. (1999) Carnosine and taurine protect rat cerebellar granular cells from free radical damage, Neurosci. Lett., 263, 169–172.

    Article  CAS  PubMed  Google Scholar 

  23. Xiang, J., Hu, Y., Smith, D. E., and Keep, R. F. (2006) PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes, Brain Res., 1122, 18–23.

  24. Sofic, E., Sapcanin, A., Tahirovic, I., Gavrankapetanovic, I., Jellinger, K., Reynolds, G. P., Tatschner, T., and Riederer, P. (2006) Antioxidant capacity in postmortem brain tissues of Parkinson’s and Alzheimer’s diseases, J. Neural Transm. Suppl., 39–43.

    Google Scholar 

  25. Lakshminarayana, R., Aruna, G., Sathisha, U. V., Dharmesh, S. M., and Baskaran, V. (2013) Structural elucidation of possible lutein oxidation products mediated through peroxyl radical inducer 2,2'-azobis(2-methylpropionamidine)dihydrochloride: antioxidant and cytotoxic influence of oxidized lutein in HeLa cells, Chem. Biol. Interact., 203, 448–455.

    Article  CAS  PubMed  Google Scholar 

  26. Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., and Robinson, J. P. (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production, J. Biol. Chem., 278, 8516–8525.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, H. M., Liu, B., and Hong, J. S. (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons, J. Neurosci., 23, 6181–6187.

    CAS  PubMed  Google Scholar 

  28. Voronkov, D. N., Dikalova, Y. V., Khudoerkov, R. M., and Yamshikova, N. G. (2013) Brain nigrostriatal system changes in rotenone-induced parkinsonism, Ann. Clin. Exp. Neurol., 7, 34–39.

    Google Scholar 

  29. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227–231.

    Article  CAS  PubMed  Google Scholar 

  30. Vladimirov, Y. A. (1996) Studies of antioxidant activity by measuring chemiluminescence kinetics, Proc. Int. Symp. on Natural Antioxidants, AOCS Publishing, pp. 125–144.

    Chapter  Google Scholar 

  31. Sariev, A. K., Abaimov, D. A., Tankevich, M. V., Pantyukhova, E. Y., Prokhorov, D. I., Fedorova, T. N., Lopachev, A. V., Stvolinskii, S. L., Konovalova, E. V., and Seifulla, R. D. (2015) Experimental study of the basic pharmacokinetic characteristics of dipeptide carnosine and its efficiency of penetration into brain tissues, Eksp. Klin. Farmakol., 78, 30–35.

    CAS  PubMed  Google Scholar 

  32. Kramer, D., and Minichiello, L. (2010) Cell culture of primary cerebellar granule cells, Methods Mol. Biol., 633, 233–239.

    Article  CAS  PubMed  Google Scholar 

  33. O’Dowd, J. J., Cairns, M. T., Trainor, M., Robins, D. J., and Miller, D. J. (1990) Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain, J. Neurochem., 55, 446–452.

    PubMed  Google Scholar 

  34. Margolis, F. L. (1974) Carnosine in the primary olfactory pathway, Science, 184, 909–911.

    Article  CAS  PubMed  Google Scholar 

  35. Fedorova, T. N. (2003) Application of chemiluminescent analysis for comparative assessment of antioxidant activity of some pharmacological compounds, Eksp. Klin. Farmakol., 66, 56–58.

    CAS  PubMed  Google Scholar 

  36. Beliaev, M. S. (2008) Carnosine as a Factor for Endoecological Protection of the Body from Damage Caused by Oxidative Stress: PhD thesis [in Russian], RUDN University, Moscow.

    Google Scholar 

  37. Konovalova, E. V., Fedorova, T. N., Makletsova, M. G., and Berezov, T. T. (2013) Protective effect of carnosine under acrolein toxicity in PC-12 cells, Vopr. Biol. Med. Farm. Khim., 6, 43–48.

    Google Scholar 

  38. Fujita, T., Kishida, T., Wada, M., Okada, N., Yamamoto, A., Leibach, F. H., and Ganapathy, V. (2004) Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2, Brain Res., 997, 52–61.

    Article  CAS  PubMed  Google Scholar 

  39. Wolf, J. P., Bouhaddi, M., Louisy, F., Mikehiev, A., Mourot, L., Cappelle, S., Vuillier, F., Andre, P., Rumbach, L., and Regnard, J. (2006) Side-effects of L-DOPA on venous tone in Parkinson’s disease: a leg-weighing assessment, Clin. Sci. (London), 110, 369–377.

    Article  CAS  Google Scholar 

  40. Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., and Bergo, M. O. (2014) Antioxidants accelerate lung cancer progression in mice, Sci. Transl. Med., 6, 221a15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lopachev.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 5, pp. 678-689.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopachev, A.V., Lopacheva, O.M., Abaimov, D.A. et al. Neuroprotective effect of carnosine on primary culture of rat cerebellar cells under oxidative stress. Biochemistry Moscow 81, 511–520 (2016). https://doi.org/10.1134/S0006297916050084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916050084

Keywords

Navigation