Skip to main content
Log in

A glutamine/asparagine-rich fragment of Gln3, but not the full-length protein, aggregates in Saccharomyces cerevisiae

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The amino acid sequence of protein Gln3 in yeast Saccharomyces cerevisiae has a region enriched with Gln (Q) and Asn (N) residues. In this study, we analyzed the effects of overexpression of Gln3 and its Q/N-rich fragment fused with yellow fluorescent protein (YFP). Being overexpressed, full-length Gln3-YFP does not form aggregates, inhibits vegetative growth, and demonstrates nuclear localization, while the Q/N-rich fragment (Gln3QN) fused with YFP forms aggregates that do not colocalize with the nucleus and do not affect growth of the cells. Although detergent-resistant aggregates of Gln3QN are formed in the absence of yeast prions, the aggregation of Gln3QN significantly increases in the presence of [PIN +] prion, while in the presence of two prions, [PSI +] and [PIN +], the percentage of cells with Gln3QN aggregates is significantly lower than in the strain bearing only [PIN +]. Data on colocalization demonstrate that this effect is mediated by interaction between Gln3QN aggregates and [PSI +] and [PIN +] prions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFP:

cyan fluorescent protein

DAPI:

4′,6-diamidino-2-phenylindole (a fluorescent dye specific to AT-rich regions of DNA)

Gln3QN:

asparagine-glutamine-rich fragment of Gln3 protein (a.a. 166-242)

[PIN +]:

prion isoform of Rnq1 protein

[PSI +]:

prion isoform of Sup35 protein

SDDAGE:

Semi-Denaturing Detergent Agarose Gel Electrophoresis

Sup35NM:

prion-forming region of Sup35 protein lacking the C-terminal domain functioning as a translation release factor

YFP:

yellow fluorescent protein

References

  1. Nizhnikov, A. A., Antonets, K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127–1144.

    Article  CAS  Google Scholar 

  2. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2014) Nomenclature 2014: amyloid fibril proteins and clinical classification of amyloidosis, Amyloid, 21, 221–224.

    Article  PubMed  Google Scholar 

  3. Fowler, D. M., Koulov, A. V., Alory-Jost, C., Marks, M. S., Balch, W. E., and Kelly, J. W. (2006) Functional amyloid formation within mammalian tissue, PLoS Biol., 4, e6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, 325, 328–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Si, K., Giustetto, M., Etkin, A., Hsu, R., Janisiewicz, A. M., Miniaci, M. C., Kim, J. H., Zhu, H., and Kandel, E. R. (2003) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia, Cell, 115, 893–904.

    Article  CAS  PubMed  Google Scholar 

  6. Majumdar, A., Cesario, W. C., White-Grindley, E., Jiang, H., Ren, F., Khan, M. R., Li, L., Choi, E. M., Kannan, K., Guo, F., Unruh, J., Slaughter, B., and Si, K. (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory, Cell, 148, 515–529.

    Article  CAS  PubMed  Google Scholar 

  7. Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S., and Hultgren, S. J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation, Science, 295, 851–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chimileski, S., Franklin, M. J., and Papke, R. T. (2014) Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer, BMC Biol., 12, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion, Science, 218, 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  10. Wickner, R., Masison, D. C., and Edskes, H. K. (1995) [PSI] and [URE3] as yeast prions, Yeast, 11, 1671–1685.

    Article  CAS  PubMed  Google Scholar 

  11. Wickner, R. B. (1994) [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

  12. Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appiarance of other prions. The stoty of [PIN], Cell, 106, 171–182.

    Article  CAS  PubMed  Google Scholar 

  13. Du, Z., Park, K. W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 40, 460–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel, B. K., Gavin-Smyth, J., and Liebman, S. W. (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion, Nat. Cell. Biol., 11, 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 137, 146–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogoza, T., Goginashvili, A., Rodionova, S., Ivanov, M., Viktorovskaya, O., Rubel, A., Volkov, K., and Mironova, L. (2010) Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1, PNAS, 107, 10573–10577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki, G., Shimazu, N., and Tanaka, M. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, 336, 355–359.

    Article  CAS  PubMed  Google Scholar 

  18. Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V., Inge Vechtomov, S. G., and Galkin, A. P. (2010) [NSI+]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 56, 467–478.

    Article  CAS  PubMed  Google Scholar 

  19. Nizhnikov, A. A., Magomedova, Z. M., Rubel, A. A., Kondrashkina, A. M., Inge-Vechtomov, S. G., and Galkin, A. P. (2012) [NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes, Curr. Genet., 58, 35–47.

    Article  CAS  PubMed  Google Scholar 

  20. Nizhnikov, A. A., Magomedova, Z. M., Saifitdinova, A. F., Inge-Vechtomov, S. G., and Galkin, A. P. (2012) Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae, Russ. J. Genet. Appl. Res., 2, 398–404.

    Article  Google Scholar 

  21. Nizhnikov, A. A., Kondrashkina, A. M., and Galkin, A. P. (2013) Interactions of [NSI+] prion-like determinant with SUP35 and VTS1 genes in Saccharomyces cerevisiae, Russ. J. Genet., 49, 1004–1012.

    Article  CAS  Google Scholar 

  22. Kondrashkina, A. M., Antonets, K. S., Galkin, A. P., and Nizhnikov, A. A. (2014) Prion-like determinant [NSI+] decreases the expression of the SUP45 gene in Saccharomyces cerevisiae, Mol. Biol., 48, 688–693.

    Article  CAS  Google Scholar 

  23. Mitchell, A. P., and Magasanik, B. (1984) Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae, Mol. Cell. Biol., 4, 2758–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blinder, D., and Magasanik, B. (1995) Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene, J. Bacteriol., 177, 4190–4193.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cox, K. H., Rai, R., Distler, M., Daugherty, J. R., Coffman, J. A., and Cooper, T. G. (2000) Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p, J. Biol. Chem., 275, 17611–17618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaiser, C., Michaelis, S., and Mitchell, A. (1994) Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  27. Zakharov, I. A., Kozhin, S. A., Kozhina, T. N., and Fedorova, I. V. (1984) Collected Methods in Genetics of the Yeast Saccharomyces [in Russian], Nauka, Leningrad.

    Google Scholar 

  28. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  29. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge Vechtomov, S. G., and Liebman, S. W. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae, Genetics, 144, 1375–1386.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nizhnikov, A. A., Kondrashkina, A. M., Antonets, K. S., and Galkin, A. P. (2014) Overexpression of genes encoding asparagine-glutamine-rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae, Russ. J. Genet. Appl. Res., 4, 122–130.

    Article  Google Scholar 

  31. Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 122, 19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rubel, A. A., Ryzhova, T. A., Antonets, K. S., Chernoff, Y. O., and Galkin, A. P. (2013) Identification of PrP sequences essential for the interaction between the PrP polymers and Aß peptide in a yeast-based assay, Prion, 7, 469–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubel, A. A., Saifitdinova, A. F., Lada, A. G., Nizhnikov, A. A., Inge-Vechtomov, S. G., and Galkin, A. P. (2008) Yeast chaperone Hsp104 controls gene expression at the post-transcriptional level, Mol. Biol., 42, 110–116.

    Article  CAS  Google Scholar 

  34. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, J. Biol. Chem., 278, 49636–49643.

    Article  CAS  PubMed  Google Scholar 

  35. Bagriantsev, S. N., Kushnirov, V. V., and Liebman, S. W. (2006) Analysis of amyloid aggregates using agarose gel electrophoresis, Methods Enzymol., 412, 33–48.

    Article  CAS  PubMed  Google Scholar 

  36. Benn, C. L., Sun, T., Sadri-Vakili, G., Mc Farland, K. N., Di Rocco, D. P., Yohrling, G. J., Clark, T. W., Bouzou, B., and Cha, J. H. (2008) Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner, J. Neurosci., 28, 10720–10733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peters, T. W., and Huang, M. (2007) Protein aggregation and polyasparagine-mediated cellular toxicity in Saccharomyces cerevisiae, Prion, 1, 144–153.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Derkatch, I. L., Uptain, S. M., Outeiro, T. F., Krishnan, R., Lindquist, S. L., and Liebman, S. W. (2004) Effects of Q/Nrich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro, Proc. Natl. Acad. Sci. USA, 101, 12934–12939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Urakov, V. N., Vishnevskaya, A. B., Alexandrov, I. M., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (2010) Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions, Prion, 4, 45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kochneva-Pervukhova, N. V., Alexandrov, A. I., and Ter Avanesyan, M. D. (2012) Amyloid-mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast, PLOS One, 7, e29832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nizhnikov, A. A., Alexandrov, A. I., Ryzhova, T. A., Mitkevich, O. V., Dergalev, A. A., Ter-Avanesyan, M. D., and Galkin, A. P. (2014) Proteomic screening for amyloid proteins, PLoS One, e116003.

  42. Derkatch, I. L., Bradley, M. E., Masse, S. V., Zadorsky, S. P., Polozkov, G. V., Inge-Vechtomov, S. G., and Liebman, S. W. (2000) Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J., 19, 1942–1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nizhnikov.

Additional information

Original Russian Text © K. S. Antonets, H. M. Sargsyan, A. A. Nizhnikov, 2016, published in Biokhimiya, 2016, Vol. 81, No. 4, pp. 555-562.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-341, January 31, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonets, K.S., Sargsyan, H.M. & Nizhnikov, A.A. A glutamine/asparagine-rich fragment of Gln3, but not the full-length protein, aggregates in Saccharomyces cerevisiae . Biochemistry Moscow 81, 407–413 (2016). https://doi.org/10.1134/S0006297916040118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916040118

Keywords

Navigation