Skip to main content
Log in

DNA with damage in both strands as affinity probes and nucleotide excision repair substrates

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nucleotide excision repair (NER) is a multistep process of recognition and elimination of a wide spectrum of damages that cause significant distortions in DNA structure, such as UV-induced damage and bulky chemical adducts. A series of model DNAs containing new bulky fluoro-azidobenzoyl photoactive lesion dCFAB and well-recognized nonnucleoside lesions nFlu and nAnt have been designed and their interaction with repair proteins investigated. We demonstrate that modified DNA duplexes dCFAB/dG (probe I), dCFAB/nFlu+4 (probe II), and dCFAB/nFlu−3 (probe III) have increased (as compared to unmodified DNA, umDNA) structure-dependent affinity for XPC—HR23B (Kd um > Kd I > Kd II Kd III ) and differentially crosslink to XPC and proteins of NER-competent extracts. The presence of dCFAB results in (i) decreased melting temperature (ΔTm = −3°C) and (ii) 12° DNA bending. The extended dCFAB/dG-DNA (137 bp) was demonstrated to be an effective NER substrate. Lack of correlation between the affinity to XPC—HR23B and substrate properties of the model DNA suggests a high impact of the verification stage on the overall NER process. In addition, DNAs containing closely positioned, well-recognized lesions in the complementary strands represent hardly repairable (dCFAB/nFlu+4, dCFAB/nFlu−3) or irreparable (nFlu/nFlu+4, nFlu/nFlu−3, nAnt/nFlu+4, nAnt/nFlu−3) structures. Our data provide evidence that the NER system of higher eukaryotes recognizes and eliminates damaged DNA fragments on a multi-criterion basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

dCFAB :

5-[3-(4-azido-2,3,5,6-tetrafluorobenzamido)propoxyprop-1-inyl]-2′-deoxycytidine

dCFABG :

exo-N-[(4-azi-dotetrafluorobenzylidenehydrazinocarbonyl)butylcarbamoyl]-2′-deoxycytidine

dCFAP :

exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]amino-ethyl}-2′-deoxycytidine

dsDNA:

double-stranded DNA

dUFAP :

5-{N-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2′-deoxy-uridine

Kd:

dissociation constant

n:

nucleotide

nAnt:

a nonnucleoside insert containing anthracenyl residue (N-[6-(9-anthracenyl-carbamoyl)hexanoyl]-3-amino-1,2-propanediol)

NER:

nucleotide excision repair

nFlu:

a nonnucleoside insert containing fluorescein residue (N-[6-(dipivaloyl-5(6)-fluoresceinyl-carbamoyl)hexanoyl]-O1-(4,4′-dimethoxytrityl)-O2-[(diisopropylamino)(2-cyanoethoxy)phosphino]-3-amino-1,2-propanediol)

ODN:

oligo(deoxy)ribonucleotide

RPA:

replication protein A

TFIIH:

transcription factor II human

Tm:

DNA duplex melting temperature

T4 PNK:

T4 polynucleotide kinase

umDNA:

unmodified DNA

XPC and XPD:

xeroderma pigmentosum group C

References

  1. Gillet, L. C., and Schaerer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair, Chem. Rev., 106, 253–276.

    Article  CAS  PubMed  Google Scholar 

  2. Hanawalt, P. C., and Spivak, G. (2008) Transcription-coupled DNA repair: two decades of progress and surprises, Nat. Rev. Mol. Cell Biol., 9, 958–970.

    Article  CAS  PubMed  Google Scholar 

  3. Petruseva, I. O., Evdokimov, A. N., and Lavrik, O. I. (2014) Molecular mechanism of global genome nucleotide excision repair, Acta Naturae, 6, 23–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Evdokimov, A., Petruseva, I., and Lavrik, O. I. (2014) Model DNA for investigation of mechanism of nucleotide excision repair, Biopolym. Cell, 30, 167–183.

    Article  CAS  Google Scholar 

  5. Min, J. H., and Pavletich, N. P. (2000) Recognition of DNA damage by the Rad4 nucleotide excision repair protein, Nature, 449, 570–575.

    Article  Google Scholar 

  6. Sugasawa, K., Akagi, J., Nishi, R., Iwai, S., and Hanaoka, F. (2009) Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning, Mol. Cell, 36, 642–653.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, X., Velmurugu, Y., Zheng, G., Park, B., Shim, Y., Kim, Y., Liu, L., Van Houten, B., He, C., Ansari, A., and Min, J. H. (2015) Kinetic gating mechanism of DNA damage recognition by Rad4/XPC, Nat. Commun., 6, 1–10.

    Google Scholar 

  8. Egly, J.-M., and Coin, F. (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor, DNA Repair, 10, 714–721.

    Article  CAS  PubMed  Google Scholar 

  9. Naegeli, H., and Sugasawa, K. (2011) The xeroderma pigmentosum pathway: decision tree analysis of DNA quality, DNA Repair, 10, 673–683.

    Article  CAS  PubMed  Google Scholar 

  10. Ziani, S., Nagy, Z., Alekseev, S., Soutoglou, E., Egly, J.-M., and Coin, F. (2014) Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin, J. Cell Biol., 206, 589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, J., and Sancar, A. (1994) Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts, J. Biol. Chem., 269, 19034–19040.

    CAS  PubMed  Google Scholar 

  12. Evdokimov, A., Petruseva, I., Tsidulko, A., Koroleva, L., Serpokrylova, I., Silnikov, V., and Lavrik, O. (2013) New synthetic substrates of mammalian nucleotide excision repair system, Nucleic Acids Res., 41, e123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rechkunova, N. I., and Lavrik, O. I. (2010) Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair, Subcell. Biochem., 50, 251–277.

    Article  CAS  PubMed  Google Scholar 

  14. Maltseva, E. A., Rechkunova, N. I., Gillet, L. C., Petruseva, I. O., Scharer, O. D., and Lavrik, O. I. (2007) Crosslinking of the NER damage recognition proteins XPC-HR23B, XPA and RPA to photoreactive probes that mimic DNA damages, Biochim. Biophys. Acta, 1770, 781–789.

    Article  CAS  PubMed  Google Scholar 

  15. Evdokimov, A. N., Petruseva, I. O., Pestryakov, P. E., and Lavrik, O. I. (2011) Photoactivated DNA analogs of sub-strates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA, Biochemistry (Moscow), 76, 157–166.

    Article  CAS  Google Scholar 

  16. Schaerer, O. D. (2003) Chemistry and biology of DNA repair, Angew. Chem. Int. Ed. Engl., 42, 2946–2974.

    Article  CAS  Google Scholar 

  17. Sutherland, B. M., Bennett, P. V., Sidorkina, O., and Laval, J. (2000) Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation, Proc. Natl. Acad. Sci. USA, 97, 103–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sugasawa, K. (2006) XPC–HR23B expression and purification, Methods Enzymol., 408, 171–188.

    Article  CAS  PubMed  Google Scholar 

  19. Smeaton, M. B., Miller, P. S., Ketner, G., Les, A., and Hanakahi, L. A. (2007) Small-scale extracts for the study of nucleotide excision repair and non-homologous end joining, Nucleic Acids Res., 35, e152.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petruseva, I. O., Tikhanovich, I. S., Maltseva, E. A., Safronov, I. V., and Lavrik, O. I. (2009) Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent HeLa cell extract, Biochemistry (Moscow), 74, 491–501.

    Article  CAS  Google Scholar 

  21. Lane, D., Prentki, P., and Chandler, M. (1992) Use of gel retardation to analyze protein–nucleic acid interactions, Microbiol. Rev., 56, 509–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Evdokimov, A. N. (2014) Design of Analogs of Substrates for the Nucleotide Excision Repair System and Analysis of Their Interaction with Cell Extract Proteins, PhD thesis, ICBFM SB Russian Academy of Sciences, Novosibirsk.

    Google Scholar 

  23. Ilina, E. S., Khodyreva, S. N., Berezhnoy, A. E., Larin, S. S., and Lavrik, O. I. (2010) Tracking Ku antigen levels in cell extracts with DNA containing abasic sites, Mutat. Res., 685, 90–96.

    Article  CAS  PubMed  Google Scholar 

  24. Oksenych, V., and Coin, F. (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening, Cell Cycle, 9, 90–96.

    Article  CAS  PubMed  Google Scholar 

  25. Fan, L. (2013) How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases, Front. Biol., 8, 363–368.

    Article  CAS  Google Scholar 

  26. Guggenheim, E. R., Xu, D., Zhang, C. X., Chang, P. V., and Lippard, S. J. (2009) Photoaffinity isolation and identification of proteins in cancer cell extracts that bind to platinum-modified DANN, Chembiochem, 10, 141–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936–10947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Y., Reeves, D., Kropachev, K., Cai, Y., Ding, S., Kolbanovskiy, M., Kolbanovskiy, A., Bolton, J., Broyde, S., Van Houten, B., and Geacintov, N. E. (2011) Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion-base stacking interactions, DNA Repair, 10, 684–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cosman, M., De los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., and Broyde, S. (1992) Solution conformation of the major adduct between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA, Proc. Natl. Acad. Sci. USA, 89, 1914–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolski, S. C., Kuper, J., Hazelmann, P., Truglio, J. J., Croteau, D. L., Van Houten, B., and Kisker, C. (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD, PLoS Biol., 6, e149.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuper, J., Wolski, S. C., Michels, G., and Kisker, C. (2012) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation, EMBO J., 31, 494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathieu, N., Kaczmarek, N., and Naegeli, H. (2010) Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase, Proc. Natl. Acad. Sci. USA, 107, 17545–17550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeo, J. E., Khoo, A., Fagbemi, A. F., and Schaerer, O. D. (2013) The efficiency of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair, Chem. Res. Toxicol., 25, 2462–2468.

    Article  Google Scholar 

  34. Lee, Y., Cai, Y., Mu, H., Broyde, S., Amin, S., Chen, X., Min, J., and Geacintov, N. E. (2014) The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair, 19, 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colton, S. L., Xu, X. S., Wang, Y. A., and Wang, G. (2006) The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair, J. Biol. Chem., 281, 27117–27125.

    Article  CAS  PubMed  Google Scholar 

  36. Le May, N., Egly, J. M., and Coin, F. (2010) True lies: the double life of the nucleotide excision repair factors in tran-scription and DNA repair, J. Nucleic Acids, pii: 616342.

    Google Scholar 

  37. Kauffmann, A., Rosselli, F., Lazar, V., Winnepenninckx, V., Mansuet-Lupo, A., Dessen, P., Van den Oord, J. J., Spatz, A., and Sarasin, A. (2008) High expression of DNA repair pathways is associated with metastasis in melanoma patients, Oncogene, 27, 565–573.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Lavrik.

Additional information

Original Russian Text © N. V. Lukyanchikova, I. O. Petruseva, A. N. Evdokimov, V. N. Silnikov, O. I. Lavrik, 2016, published in Biokhimiya, 2016, Vol. 81, No. 3, pp. 386–400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanchikova, N.V., Petruseva, I.O., Evdokimov, A.N. et al. DNA with damage in both strands as affinity probes and nucleotide excision repair substrates. Biochemistry Moscow 81, 263–274 (2016). https://doi.org/10.1134/S0006297916030093

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916030093

Key words

Navigation