Skip to main content
Log in

Thymic involution in ontogenesis: Role in aging program

  • Discussions
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In most mammals, involution of the thymus occurs with aging. In this issue of Biochemistry (Moscow) devoted to phenoptosis, A. V. Khalyavkin considered involution of a thymus as an example of the program of development and further–of proliferation control and prevention of tumor growth. However, in animals devoid of a thymus (e.g. naked mice), stimulation of carcinogenesis, but not its prevention was observed. In this report, we focus on the involution of the thymus as a manifestation of the aging program (slow phenoptosis). We also consider methods of reversal/arrest of this program at different levels of organization of life (cell, tissue, and organism) including surgical manipulations, hormonal effects, genetic techniques, as well as the use of conventional and mitochondria-targeted antioxidants. We conclude that programmed aging (at least on the model of age-dependent thymic atrophy) can be inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodey, B., Bodey, B., Jr., Siegel, S. E., and Kaiser, H. E. (1997. Involution of the mammalian thymus, one of the leading regulators of aging, In Vivo, 11, 421–440.

    CAS  PubMed  Google Scholar 

  2. Khalyavkin, A. V., and Krutko, V. N. (2015) Early thymus involution–manifestation of the aging program or the program of development? Biochemistry (Moscow), 80, 16221625.

    Google Scholar 

  3. Makinodan, T., and Yunis, E. (1996) Immunology and Aging [Russian translation], Mir, Moscow.

    Google Scholar 

  4. Dominguez-Gerpe, L., and Rey-Meindez, M. (2003. Evolution of the thymus size in response to physiological and random events throughout life, Microsc. Res. Tech., 62, 464–476.

    Article  PubMed  Google Scholar 

  5. Zabrodin, V. A. (2002. Estimating the rate of thymic involution based on the level of entropy of its macroparameters, Vestnik Nov. Med. Tekhnol., 3, 102.

    Google Scholar 

  6. Zabrodin, V. A. (2003. Estimating the thymic asymmetry in adults based on correlation analysis of its macroparameters, Vestnik Nov. Med. Tekhnol., 1–2, 58–59.

    Google Scholar 

  7. Yarygin, A., and Melentiev, A. S. (2010) Manual on Gerontology and Geriatrics in 4 volumes [in Russian], Vol. 1, GEOTAR-Media, Moscow.

    Google Scholar 

  8. Berthiaume, F., Aparicio, C. L., Eungdamrong, J., and Yarmush, M. L. (1999. Ageand disease-related decline in immune function: an opportunity for “thymus-boosting” therapies, Tissue Eng., 5, 499–514.

    Article  CAS  PubMed  Google Scholar 

  9. Kulikov, A. V., Novoselova, E. G., Korystov, Yu. N., Glushkova, O. V., Cherenkov, D. A., Smirnova, G. N., Arkhipova, L. V., and Kulikov, D. A. (2005. Age-related thymic involution: ways to decelerate, Usp. Gerontol., 17, 82–86.

    Google Scholar 

  10. Aspinall, R., and Andrew, D. (2000. Thymic involution in aging, J. Clin. Immunol., 20, 250–256.

    Article  CAS  PubMed  Google Scholar 

  11. Aspinall, R., and Mitchell, W. (2008. Reversal of age-associated thymic atrophy: treatments, delivery, and side effects, Exp. Gerontol., 43, 700–705.

    Article  CAS  PubMed  Google Scholar 

  12. Montecino-Rodriquez, E., Min, H., and Dorshkind, K. (2005. Reevaluating current models of thymic involution, Semin. Immunol., 17, 356–361.

    Article  CAS  PubMed  Google Scholar 

  13. Aw, D., Silva, A. B., Maddick, M., Von Zglinicki, T., and Palmer, D. B. (2008. Architectural changes in the thymus of aging mice, Aging Cell, 7, 158–167.

    Article  CAS  PubMed  Google Scholar 

  14. Kiseleva, E. P. (2004. Mechanisms of thymic involution during tumor growth, Usp. Sovrem. Biol., 124, 589–601.

    CAS  Google Scholar 

  15. Leposavic, G., and Perisic, M. (2008. Age-associated remodeling of thymopoiesis: role for gonadal hormones and catecholamines, Neuroimmunomodulation, 15, 290–322.

    Article  CAS  PubMed  Google Scholar 

  16. Fitzpatrick, F. T., Kendall, M. D., Wheeler, M. J., Adcock, I. M., and Greenstein, B. D. (1985. Reappearance of thymus of ageing rats after orchidectomy, J. Endocrinol., 106, 17–19.

    Article  Google Scholar 

  17. Hassman, R., Weetman, A. P., Gunn, C., Stringer, B. M., Wynford-Thomas, D., Hall, R., and McGregor, A. M. (1985. The effects of hyperthyroidism on experimental autoimmune thyroiditis in the rat, Endocrinology, 116, 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  18. Yacoub, A., Gaitonde, D. Y., and Wood, J. C. (2009. Thymic hyperplasia and Graves’ disease, Endocrin. Pract., 15, 534–539.

    Article  Google Scholar 

  19. Greenstein, B. D., Fitzpatrick, F. T., Kendall, M. D., and Wheeler, M. J. (1987. Regeneration of the thymus in old male rats treated with a stable analogue of LHRH, J. Endocrinol., 112, 345–350.

    Article  CAS  PubMed  Google Scholar 

  20. Bredenkamp, N., Nowell, C. S., and Blackburn, C. C. (2014. Regeneration of the aged thymus by a single transcription factor, Development, 141, 1627–1637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kolayeva, S. G., Novoselova, E. G., Amerkhanov, Z. G., Kulikov, A. V., and Ivkov, V. G. (2003. Annuals thymic involution and regeneration in hibernating animals and perspectives of its studies in gerontology and stem cell proliferation, Tsitologiya, 45, 628–634.

    Google Scholar 

  22. Khavinson, V. Kh., Linkova, N. S., Polyakova, V. O., Dudnov, A. V., and Kvetnoy, I. M. (2011. Age-dependent dynamics of differentiation of human immune cells, Byul. Eksp. Biol. Med., 151, 569–572.

    Google Scholar 

  23. Ashapkin, V. V., Linkova, N. S., Khavinson, V. Kh., and Vanyushin, B. F. (2015. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells, Biochemistry (Moscow), 80, 310–322.

    Article  CAS  Google Scholar 

  24. Zaia, A., and Piantanelli, L. (2000. Insulin receptors in mouse brain: reversibility of age-related impairments by a thymic extract, J. Am. Aging Assoc., 23, 133–139.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Duszczyszyn, D. A., Williams, J. L., Mason, H., Lapierre, Y., Antel, J., and Haegert, D. G. (2010. Thymic involution and proliferative T-cell responses in multiple sclerosis, J. Neuroimmunol., 221, 73–80.

    Article  CAS  PubMed  Google Scholar 

  26. Kohler, S., and Thiel, A. (2009. Life after the thymus: CD31+ and CD31-human naive CD4+ T-cell subsets, Blood, 113, 769–774.

    Article  CAS  PubMed  Google Scholar 

  27. Babaeva, A. G., and Zuev, V. A. (2007. Phenomenon of the transfer of aging signs to young mice by spleen lymphoid cells from old syngeneic donors, Byul. Eksp. Biol. Med., 7, 100–102.

    Google Scholar 

  28. Bullough, W. S. (1971. Ageing of mammals, Nature, 229, 608–610.

    Article  CAS  PubMed  Google Scholar 

  29. Griffith, A. V., Venables, T., Shi, J., Farr, A., Van Remmen, H., Szweda, L., Fallahi, M., Rabinovitch, P., and Petrie, H. T. (2015. Metabolic damage and premature thymus aging caused by stromal catalase deficiency, Cell Rep., 12, 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  30. Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009. Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging (Albany NY), 1, 389–401.

    CAS  Google Scholar 

  31. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009. An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

    Article  CAS  PubMed  Google Scholar 

  32. Skulachev, M. V., and Skulachev, V. P. (2014. New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.

    Article  CAS  Google Scholar 

  33. Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015. Aging as an evolvability-increasing program, which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shilovsky.

Additional information

Original Russian Text © G. A. Shilovsky, B. A. Feniouk, V. P. Skulachev, 2015, published in Biokhimiya, 2015, Vol. 80, No. 12, pp. 1898-1901.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovsky, G.A., Feniouk, B.A. & Skulachev, V.P. Thymic involution in ontogenesis: Role in aging program. Biochemistry Moscow 80, 1629–1631 (2015). https://doi.org/10.1134/S0006297915120135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915120135

Keywords

Navigation