Skip to main content
Log in

Morphometric examination of mitochondrial ultrastructure in aging cardiomyocytes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mitochondrial ultrastructure in cardiomyocytes from 3- and 24-month-old Wistar and OXYS rats was investigated using a new approach designed for morphometric analysis. The data fully confirm the electron microscopy data: the area of the inner mitochondrial membrane per unit volume of mitochondria was significantly decreased with age, as found on heart muscle section. In 3-month-old Wistar rats from the control group, this parameter was 41.3 ± 1.52 μm2/μm3, where-as in OXYS rats it was decreased to 30.57 ± 1.74 μm2/μm3. With age, an area of the inner mitochondrial membrane per unit volume of mitochondria declined in both rat strains: Wistar — from 41.3 ± 1.52 to 21.47 ± 1.22 μm2/μm3, OXYS — from 30.57 ± 1.74 to 16.3 ± 0.89 μm2/μm3. A new method that we designed and used for morphometric analysis notably simplifies the process of morphometric measurements and opens up good opportunities for its further optimization using image recognition technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ten Prominent Causes of Mortality Worldwide (2014) World Health Organization, News Bulletin No. 310 (http://www.who.int/mediacentre/factsheets/fs310/en/).

  2. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.

    Article  CAS  PubMed  Google Scholar 

  3. Harman, D. (1972) The biologic clock: the mitochondria, J. Am. Geriatr. Soc., 20, 145–147.

    Article  CAS  PubMed  Google Scholar 

  4. Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E. (1980) Mitochondrial role in cell aging, Exp. Gerontol., 15, 575–591.

    Article  CAS  PubMed  Google Scholar 

  5. Skulachev, V. P. (1997) Body aging — a special biological function rather than a result of a complicated biological system failure: a biological justification for Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  6. Skulachev, V. P. (1999) Phenoptosis: a programmed body death, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  7. Skulachev, V. P. (2001) Events of the programmed death. Mitochondria, cells and organs: a role for reactive oxygen intermediates, Soros. Obrazovat. Zh., 7, 4–10.

    Google Scholar 

  8. Lenaz, G. (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology, IUBMB Life, 52, 159–164.

    Article  CAS  PubMed  Google Scholar 

  9. Andreev, A. Yu., Kushnareva, Yu. E., and Starkov, A. A. (2005) A metabolism of reactive oxygen intermediates in mitochondria, Biochemistry (Moscow), 70, 200–214.

    Article  Google Scholar 

  10. Honda, H. M., Korge, P., and Weiss, J. N. (2005) Mitochondria and ischemia/reperfusion injury, Ann. N. Y. Acad. Sci., 1047, 248–258.

    Article  CAS  PubMed  Google Scholar 

  11. Zweier, J. L., and Talukder, M. A. (2006) The role of oxidants and free radicals in reperfusion injury, Cardiovasc. Res., 70, 181–190.

    Article  CAS  PubMed  Google Scholar 

  12. Yellon, D. M., and Hausenloy, D. J. (2007) Myocardial reperfusion injury, N. Engl. J. Med., 357, 1121–1135.

    Article  CAS  PubMed  Google Scholar 

  13. Eltzschig, H. K., and Eckle, T. (2011) Ischemia and reperfusion — from mechanism to translation, Nature Med., 17, 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  14. Borutaite, V., Toleikis, A., and Brown, G. C. (2013) In the eye of the storm: mitochondrial damage during heart and brain ischaemia, FEBS J., 280, 4999–5014.

    Article  CAS  PubMed  Google Scholar 

  15. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N., Smith, A. C., Eyassu, F., Shirley, R., Hu, C. H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S., Brookes, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robinson, A. J., Work, L. M., Frezza, C., Krieg, T., and Murphy, M. P. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431–435.

    Article  CAS  PubMed  Google Scholar 

  16. Hackenbrock, C. R. (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria, J. Cell Biol., 30, 269–297.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hackenbrock, C. R. (1968) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states, Proc. Natl. Acad. Sci. USA, 61, 598–605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Green, D. E., Asai, J., and Harris, R. A. (1968) Conformational basis of energy transformations in membrane systems. III. Configurational changes in the mitochondrial inner membrane induced by changes in functional states, Arch. Biochem. Biophys., 125, 684–705.

    Article  CAS  PubMed  Google Scholar 

  19. Bakeeva, L. E., Severina, I. I., Skulachev, V. P., Chentsov, Yu. S., and Yasaytis, A. A. (1971) Penetrating ions and structure of mitochondria, in Mitochondria. Structure and Functions in Health and Pathology [in Russian], Nauka, Moscow.

    Google Scholar 

  20. Bakeeva, L. E., and Yasaytis, A. A. (1972) Changes in structure of mitochondria in response to functional impacts, in Mitochondria. Molecular Mechanisms of Enzymatic Reactions [in Russian], Nauka, Moscow, pp. 56–64.

    Google Scholar 

  21. Mccallister, B. D., and Brown, A. L. (1965) A quantitative morphological study of the mitochondria in experimental cardiac hypertrophy, Lab. Invest., 14, 692–700.

    CAS  PubMed  Google Scholar 

  22. Cieciura, L., Rydzynski, K., and Klitonczyk, W. (1979) Stereologic studies on mitochondrial configuration in different organs of the rat, Cell Tissue Res., 196, 347–360.

    Article  CAS  PubMed  Google Scholar 

  23. Weibel, E. R. (1979) Stereological Methods. Vol. 1. Practical Methods for Biological Morphometry, Academic Press, London.

    Google Scholar 

  24. Gundersen, H. J., Bendtsen, T. F., Korbo, L., Marcussen, N., Moller, A., Nielsen, K., Nyengaard, J. R., Pakkenberg, B., Sorensen, F. B., and Vesterby, A. (1989) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis, APMIS, 96, 379–394.

    Article  Google Scholar 

  25. Mandarim-de-Lacerda, C. A. (2003) Stereological tools in biomedical research, An. Acad. Bras. Cienc., 75, 469–486.

    Article  PubMed  Google Scholar 

  26. Zhdankina, A. A., Fursova, A. Z., Logvinov, S. V., and Kolosova, N. G. (2008) Clinical and morphological characteristics of chorio-retinal degeneration in early aging OXYS rats, Bull. Exp. Biol. Med., 146, 455–458.

    Article  CAS  PubMed  Google Scholar 

  27. Solov’eva, N. A., Morozkova, T. S., and Salganik, R. I. (1975) Breeding of rat substrain with signs of hereditary galactosemia and examination of their biochemical features, Genetika, 18, 63–71.

    Google Scholar 

  28. Rumyantseva, Yu. V., Fursova, A. Zh., Fedoseeva, L. A., and Kolosova, N. G. (2008) Alteration of physic-chemical characteristics and α-crystallin gene expression in lenses of OXYS rats during cataract development, Biochemistry (Moscow), 73, 1176–1182.

    Article  CAS  Google Scholar 

  29. Green, D. E., and Baum, H. (1970) Energy and the Mitochondrion, Academic Press, N. Y.-London.

    Google Scholar 

  30. Glagolev, A. A. (1941) Geometric Methods of Quantitative Aggregate Analysis by Using Microscope [in Russian], Gosgeolizdat, Moscow.

    Google Scholar 

  31. Sachs, H. G., Colgan, J. A., and Lazarus, M. L. (1977) Ultrastructure of the aging myocardium: a morphometric approach, Am. J. Anat., 150, 63–71.

    Article  CAS  PubMed  Google Scholar 

  32. Frenzel, H., and Feimann, J. (1984) Age-dependent structural changes in the myocardium of rats. A quantitative light- and electron-microscopic study on the right and left chamber wall, Mech. Ageing Dev., 27, 29–41.

    Article  CAS  PubMed  Google Scholar 

  33. Zacharova, G., and Kubinova, L. (1995) Stereological methods based on point counting and unbiased counting frames for two-dimensional measurements in muscles: comparison with manual and image analysis methods, J. Muscle Res. Cell Motil., 16, 295–302.

    Article  CAS  PubMed  Google Scholar 

  34. Tang, Y., Nyengaard, J. R., Andersen, J. B., Baandrup, U., and Gundersen, H. J. (2009) The application of stereological methods for estimating structural parameters in the human heart, Anat. Rec. (Hoboken), 292, 1630–1647.

    Article  Google Scholar 

  35. Pilipenko, D. I. (2010) Morphometric-Stereological Analysis of Mitochondrial Ultrastructure during Oxidative Stress: synopsis of candidate dissertation [in Russian], MGU, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Bakeeva.

Additional information

Original Russian Text © Ch. M. El’darov, V. B. Vays, I. M. Vangeli, N. G. Kolosova, L. E. Bakeeva, 2015, published in Biokhimiya, 2015, Vol. 80, No. 5, pp. 716–722.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El’darov, C.M., Vays, V.B., Vangeli, I.M. et al. Morphometric examination of mitochondrial ultrastructure in aging cardiomyocytes. Biochemistry Moscow 80, 604–609 (2015). https://doi.org/10.1134/S0006297915050132

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050132

Key words

Navigation