Skip to main content
Log in

Cytochrome bd protects bacteria against oxidative and nitrosative stress: A potential target for next-generation antimicrobial agents

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytochrome bd is a terminal quinol oxidase of the bacterial respiratory chain. This tri-heme integral membrane protein generates a proton motive force at lower efficiency than heme-copper oxidases. This notwithstanding, under unfavorable growth conditions bacteria often use cytochrome bd in place of heme-copper enzymes as the main terminal oxidase. This is the case for several pathogenic and opportunistic bacteria during host colonization. This review summarizes recent data on the contribution of cytochrome bd to bacterial resistance to hydrogen peroxide, nitric oxide, and peroxynitrite, harmful species produced by the host as part of the immune response to microbial infections. Growing evidence supports the hypothesis that bd-type oxidases contribute to bacterial virulence by promoting microbial survival under oxidative and nitrosative stress conditions. For these reasons, cytochrome bd represents a protein target for the development of next-generation antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k :

observed rate constant

K i :

apparent inhibition constant

ONOO :

peroxynitrite

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

References

  1. Poole, R. K., and Cook, G. M. (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation, Adv. Microb. Physiol., 43, 165–224.

    CAS  PubMed  Google Scholar 

  2. Giuffrè, A., Borisov, V. B., Arese, M., Sarti, P., and Fortè, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178–1187.

    PubMed  Google Scholar 

  3. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565–574.

    Google Scholar 

  4. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287–1291.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Borisov, V. B., and Verkhovsky, M. I. (2009) Oxygen as acceptor, in EcoSal Plus — Cellular and Molecular Biology of E. coli, Salmonella, and the Enterobacteriaceae; doi: 10.1128/ecosalplus.3.2.7 (http://www.asmscience.org/content/journal/ecosalplus/10.1128/ecosalplus.3.2.7) (Stewart, V., ed.) ASM Press, Washington, DC, pp. 1–31.

    Google Scholar 

  6. Giuffrè, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622–629.

    PubMed  Google Scholar 

  7. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398–1413.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800–13809.

    CAS  PubMed  Google Scholar 

  9. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657–3662.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514–28519.

    CAS  PubMed  Google Scholar 

  11. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b 595/heme d active site, Biochemistry, 47, 7907–7914.

    CAS  PubMed  Google Scholar 

  12. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320–17324.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikström, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936–3942.

    CAS  PubMed  Google Scholar 

  14. Bertsova, Y. V., Bogachev, A. V., and Skulachev, V. P. (1997) Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii, FEBS Lett., 414, 369–372.

    CAS  PubMed  Google Scholar 

  15. Kolonay, J. F., Jr., and Maier, R. J. (1997) Formation of pH and potential gradients by the reconstituted Azotobacter vinelandii cytochrome bd respiratory protection oxidase, J. Bacteriol., 179, 3813–3817.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476–488.

    CAS  PubMed  Google Scholar 

  17. Siletsky, S. A. (2013) Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase, Front. Biosci., 18, 36–57.

    CAS  Google Scholar 

  18. Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikström, M. (2013) The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1–9.

    CAS  PubMed  Google Scholar 

  19. Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikström, M., Soulimane, T., and Verkhovsky, M. I. (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383–1392.

    CAS  PubMed  Google Scholar 

  20. Shi, L., Sohaskey, C. D., Kana, B. D., Dawes, S., North, R. J., Mizrahi, V., and Gennaro, M. L. (2005) Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration, Proc. Natl. Acad. Sci. USA, 102, 15629–15634.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Juty, N. S., Moshiri, F., Merrick, M., Anthony, C., and Hill, S. (1997) The Klebsiella pneumoniae cytochrome bd’ terminal oxidase complex and its role in microaerobic nitrogen fixation, Microbiology, 143, 2673–2683.

    CAS  PubMed  Google Scholar 

  22. Way, S. S., Sallustio, S., Magliozzo, R. S., and Goldberg, M. B. (1999) Impact of either elevated or decreased levels of cytochrome bd expression on Shigella flexneri virulence, J. Bacteriol., 181, 1229–1237.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Larsen, M. H., Kallipolitis, B. H., Christiansen, J. K., Olsen, J. E., and Ingmer, H. (2006) The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes, Mol. Microbiol., 61, 1622–1635.

    CAS  PubMed  Google Scholar 

  24. Yamamoto, Y., Poyart, C., Trieu-Cuot, P., Lamberet, G., Gruss, A., and Gaudu, P. (2005) Respiration metabolism of group B Streptococcus is activated by environmental heme and quinone and contributes to virulence, Mol. Microbiol., 56, 525–534.

    CAS  PubMed  Google Scholar 

  25. Endley, S., McMurray, D., and Ficht, T. A. (2001) Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection, J. Bacteriol., 183, 2454–2462.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Loisel-Meyer, S., Jimenez de Bagues, M. P., Kohler, S., Liautard, J. P., and Jubier-Maurin, V. (2005) Differential use of the two high-oxygen-affinity terminal oxidases of Brucella suis for in vitro and intramacrophagic multiplication, Infect. Immun., 73, 7768–7771.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang-Barber, L., Turner, A. K., Martin, G., Frankel, G., Dougan, G., and Barrow, P. A. (1997) Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization, J. Bacteriol., 179, 7186–7190.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Turner, A. K., Barber, L. Z., Wigley, P., Muhammad, S., Jones, M. A., Lovell, M. A., Hulme, S., and Barrow, P. A. (2003) Contribution of proton-translocating proteins to the virulence of Salmonella enterica serovars Typhimurium, Gallinarum, and Dublin in chickens and mice, Infect. Immun., 71, 3392–3401.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Baughn, A. D., and Malamy, M. H. (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen, Nature, 427, 441–444.

    CAS  PubMed  Google Scholar 

  30. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffrè, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265–269.

    PubMed  Google Scholar 

  31. Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1992) Involvement of a d-type oxidase in the Na+-motive respiratory chain of Escherichia coli growing under low ΔμH + conditions, FEBS Lett., 306, 199–202.

    CAS  PubMed  Google Scholar 

  32. Bogachev, A. V., Murtazina, R. A., Shestopalov, A. I., and Skulachev, V. P. (1995) Induction of the Escherichia coli cytochrome d by low ΔμH + and by sodium ions, Eur. J. Biochem., 232, 304–308.

    CAS  PubMed  Google Scholar 

  33. Wall, D., Delaney, J. M., Fayet, O., Lipinska, B., Yamamoto, T., and Georgopoulos, C. (1992) arc-Dependent thermal regulation and extragenic suppression of the Escherichia coli cytochrome d operon, J. Bacteriol., 174, 6554–6562.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Poole, R. K., and Hill, S. (1997) Respiratory protection of nitrogenase activity in Azotobacter vinelandii — roles of the terminal oxidases, Biosci. Rep., 17, 307–317.

    Google Scholar 

  35. Bertsova, Y. V., Demin, O. V., and Bogachev, A. V. (2005) Respiratory protection of nitrogenase complex in Azotobacter vinelandii, Uspekhi Biol. Khim., 45, 205–234.

    CAS  Google Scholar 

  36. Dincturk, H. B., Demir, V., and Aykanat, T. (2011) Bd oxidase homologue of photosynthetic purple sulfur bacterium Allochromatium vinosum is co-transcribed with a nitrogen fixation related gene, Antonie van Leeuwenhoek, 99, 211–220.

    CAS  PubMed  Google Scholar 

  37. Hassani, B. K., Steunou, A. S., Liotenberg, S., Reiss-Husson, F., Astier, C., and Ouchane, S. (2010) Adaptation to oxygen: role of terminal oxidases in photosynthesis initiation in the purple photosynthetic bacterium, Rubrivivax gelatinosus, J. Biol. Chem., 285, 19891–19899.

    CAS  Google Scholar 

  38. Bader, M., Muse, W., Ballou, D. P., Gassner, C., and Bardwell, J. C. A. (1999) Oxidative protein folding is driven by the electron transport system, Cell, 98, 217–227.

    CAS  PubMed  Google Scholar 

  39. Mobius, K., Arias-Cartin, R., Breckau, D., Hannig, A. L., Riedmann, K., Biedendieck, R., Schroder, S., Becher, D., Magalon, A., Moser, J., Jahn, M., and Jahn, D. (2010) Heme biosynthesis is coupled to electron transport chains for energy generation, Proc. Natl. Acad. Sci. USA, 107, 10436–10441.

    PubMed Central  PubMed  Google Scholar 

  40. Van der Oost, J., deBoer, A. P. N., de Gier, J.-W. L., Zumft, W. G., Stouthamer, A. H., and van Spanning, R. J. M. (1994) The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase, FEMS Microbiol. Lett., 121, 1–10.

    PubMed  Google Scholar 

  41. Green, G. N., Fang, H., Lin, R.-J., Newton, G., Mather, M., Georgiou, C. D., and Gennis, R. B. (1988) The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli, J. Biol. Chem., 263, 13138–13143.

    CAS  PubMed  Google Scholar 

  42. Poole, R. K., Kumar, C., Salmon, I., and Chance, B. (1983) The 650 nm chromophore in Escherichia coli is an “Oxy-“ or oxygenated compound, not the oxidized form of cytochrome oxidase d: a hypothesis, J. Gen. Microbiol., 129, 1335–1344.

    CAS  PubMed  Google Scholar 

  43. Kahlow, M. A., Loehr, T. M., Zuberi, T. M., and Gennis, R. B. (1993) The oxygenated complex of cytochrome d terminal oxidase: direct evidence for Fe-O2 coordination in a chlorin-containing enzyme by resonance Raman spectroscopy, J. Am. Chem. Soc., 115, 5845–5846.

    CAS  Google Scholar 

  44. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437–443.

    Google Scholar 

  45. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567–4570.

    CAS  PubMed  Google Scholar 

  46. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177–11184.

    CAS  PubMed  Google Scholar 

  47. Van Orsdel, C. E., Bhatt, S., Allen, R. J., Brenner, E. P., Hobson, J. J., Jamil, A., Haynes, B. M., Genson, A. M., and Hemm, M. R. (2013) The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J. Bacteriol., 195, 3640–3650.

    Google Scholar 

  48. Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537–1541.

    CAS  PubMed  Google Scholar 

  49. Chen, H., Luo, Q., Yin, J., Gao, T., and Gao, H. (2015) Evidence for requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis, Biochim. Biophys. Acta, 1850, 318–328.

    CAS  PubMed  Google Scholar 

  50. Lorence, R. M., Koland, J. G., and Gennis, R. B. (1986) Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b 595, Biochemistry, 25, 2314–2321.

    CAS  PubMed  Google Scholar 

  51. Miller, M. J., Hermodson, M., and Gennis, R. B. (1988) The active form of the cytochrome d terminal oxidase complex of Escherichia coli is a heterodimer containing one copy of each of the two subunits, J. Biol. Chem., 263, 5235–5240.

    CAS  PubMed  Google Scholar 

  52. Newton, G., and Gennis, R. B. (1991) In vivo assembly of the cytochrome d terminal oxidase complex of Escherichia coli from genes encoding the two subunits expressed on separate plasmids, Biochim. Biophys. Acta, 1089, 8–12.

    CAS  PubMed  Google Scholar 

  53. Zhang, J., Barquera, B., and Gennis, R. B. (2004) Gene fusions with β-lactamase show that subunit I of the cytochrome bd quinol oxidase from E. coli has nine transmembrane helices with the O2 reactive site near the periplasmic surface, FEBS Lett., 561, 58–62.

    CAS  PubMed  Google Scholar 

  54. Poole, R. K., and Williams, H. D. (1987) Proposal that the function of the membrane-bound cytochrome a1-like haemoprotein (cytochrome b 595) in Escherichia coli is a direct electron donation to cytochrome d, FEBS Lett., 217, 49–52.

    CAS  PubMed  Google Scholar 

  55. Hata-Tanaka, A., Matsuura, K., Itoh, S., and Anraku, Y. (1987) Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase of Escherichia coli, Biochim. Biophys. Acta, 893, 289–295.

    CAS  PubMed  Google Scholar 

  56. D’mello, R., Hill, S., and Poole, R. K. (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two-oxygen-binding hemes: implications for regulation of activity in vivo by oxygen inhibition, Microbiology, 142, 755–763.

    PubMed  Google Scholar 

  57. Rothery, R. A., Houston, A. M., and Ingledew, W. J. (1987) The respiratory chain of anaerobically grown Escherichia coli: reactions with nitrite and oxygen, J. Gen. Microbiol., 133, 3247–3255.

    CAS  PubMed  Google Scholar 

  58. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863–5867.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565–28569.

    CAS  PubMed  Google Scholar 

  60. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740–750.

    CAS  PubMed  Google Scholar 

  61. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J.-L., and Konstantinov, A. A. (2000) Femtosecond resolution of lig- and-heme interactions in the high-affinity quinol oxidase bd: a di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554–1559.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b 595 reacts with CO, J. Biol. Chem., 276, 22095–22099.

    CAS  PubMed  Google Scholar 

  63. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J.-L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b 595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654–1662.

    CAS  PubMed  Google Scholar 

  64. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b 595 is 10 Å, Biochemistry, 47, 1752–1759.

    CAS  PubMed  Google Scholar 

  65. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657–1664.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65–67.

    CAS  PubMed  Google Scholar 

  67. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617; doi: 95610.91371/journal.pone.0095617.

    PubMed Central  PubMed  Google Scholar 

  68. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14–22.

    CAS  Google Scholar 

  69. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087–2094.

    CAS  PubMed  Google Scholar 

  70. Borisov, V. B., Forte, E., Sarti, P., and Giuffrè, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503–509.

    CAS  PubMed  Google Scholar 

  71. Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830–8838.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705–3709.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231–239.

    Google Scholar 

  74. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975–982.

    CAS  PubMed  Google Scholar 

  75. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffrè, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuBlacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823–4826.

    CAS  PubMed  Google Scholar 

  76. Lindqvist, A., Membrillo-Hernandez, J., Poole, R. K., and Cook, G. M. (2000) Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress, Antonie Van Leeuwenhoek, 78, 23–31.

    CAS  PubMed  Google Scholar 

  77. Korshunov, S., and Imlay, J. A. (2010) Two sources of endogenous hydrogen peroxide in Escherichia coli, Mol. Microbiol., 75, 1389–1401.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214–2218.

    CAS  PubMed  Google Scholar 

  79. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428–436.

    CAS  Google Scholar 

  80. Brown, G. C. (1995) Reversible binding and inhibition of catalase by nitric oxide, Eur. J. Biochem., 232, 188–191.

    CAS  PubMed  Google Scholar 

  81. Small, J. L., Park, S. W., Kana, B. D., Ioerger, T. R., Sacchettini, J. C., and Ehrt, S. (2013) Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis, MBio, 4, e00475–00413.

    PubMed Central  PubMed  Google Scholar 

  82. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006–01013.

    PubMed Central  PubMed  Google Scholar 

  83. Pullan, S. T., Gidley, M. D., Jones, R. A., Barrett, J., Stevanin, T. M., Read, R. C., Green, J., and Poole, R. K. (2007) Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation, J. Bacteriol., 189, 1845–1855.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Richardson, A. R., Dunman, P. M., and Fang, F. C. (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity, Mol. Microbiol., 61, 927–939.

    CAS  PubMed  Google Scholar 

  85. Machado, P., Felix, R., Rodrigues, R., Oliveira, S., and Rodrigues-Pousada, C. (2006) Characterization and expression analysis of the cytochrome bd oxidase operon from Desulfovibrio gigas, Curr. Microbiol., 52, 274–281.

    CAS  PubMed  Google Scholar 

  86. Moore, C. M., Nakano, M. M., Wang, T., Ye, R. W., and Helmann, J. D. (2004) Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside, J. Bacteriol., 186, 4655–4664.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffrè, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201–204.

    CAS  PubMed  Google Scholar 

  88. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffrè, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182–188.

    CAS  PubMed  Google Scholar 

  89. Mason, M. G., Nicholls, P., Wilson, M. T., and Cooper, C. E. (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 103, 708–713.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffrè, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97–102.

    CAS  PubMed  Google Scholar 

  91. Borisov, V. B., Forte, E., Giuffrè, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and endproducts, J. Inorg. Biochem., 103, 1185–1187.

    CAS  PubMed  Google Scholar 

  92. Sarti, P., Giuffrè, A., Forte, E., Mastronicola, D., Barone, M. C., and Brunori, M. (2000) Nitric oxide and cytochrome c oxidase: mechanisms of inhibition and NO degradation, Biochem. Biophys. Res. Commun., 274, 183–187.

    CAS  PubMed  Google Scholar 

  93. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. K., and Cooper, C. E. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94–96.

    CAS  PubMed  Google Scholar 

  94. Fu, H., Chen, H., Wang, J., Zhou, G., Zhang, H., Zhang, L., and Gao, H. (2013) Crp-dependent cytochrome bd oxidase confers nitrite resistance to Shewanella oneidensis, Environ. Microbiol., 15, 2198–2212.

    CAS  PubMed  Google Scholar 

  95. Zhang, H., Fu, H., Wang, J., Sun, L., Jiang, Y., Zhang, L., and Gao, H. (2013) Impacts of nitrate and nitrite on physiology of Shewanella oneidensis, PLoS One, 8, e62629.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Ferrer-Sueta, G., and Radi, R. (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals, ACS Chem. Biol., 4, 161–177.

    CAS  PubMed  Google Scholar 

  97. McLean, S., Bowman, L. A., Sanguinetti, G., Read, R. C., and Poole, R. K. (2010) Peroxynitrite toxicity in Escherichia coli K12 elicits expression of oxidative stress responses and protein nitration and nitrosylation, J. Biol. Chem., 285, 20724–20731.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Lindemann, C., Lupilova, N., Muller, A., Warscheid, B., Meyer, H. E., Kuhlmann, K., Eisenacher, M., and Leichert, L. I. (2013) Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress, J. Biol. Chem., 288, 19698–19714.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Rubbo, H., Trostchansky, A., and O’Donnell, V. B. (2009) Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences, Arch. Biochem. Biophys., 484, 167–172.

    CAS  PubMed  Google Scholar 

  100. Salgo, M. G., Bermudez, E., Squadrito, G. L., and Pryor, W. A. (1995) Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes, Arch. Biochem. Biophys., 322, 500–505.

    CAS  PubMed  Google Scholar 

  101. Sharpe, M. A., and Cooper, C. E. (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity, J. Biol. Chem., 273, 30961–30972.

    CAS  PubMed  Google Scholar 

  102. Cooper, C. E., and Davies, N. A. (2000) Effects of nitric oxide and peroxynitrite on the cytochrome oxidase Km for oxygen: implications for mitochondrial pathology, Biochim. Biophys. Acta, 1459, 390–396.

    CAS  PubMed  Google Scholar 

  103. Cooper, C. E., Davies, N. A., Psychoulis, M., Canevari, L., Bates, T. E., Dobbie, M. S., Casley, C. S., and Sharpe, M. A. (2003) Nitric oxide and peroxynitrite cause irreversible increases in the Km for oxygen of mitochondrial cytochrome oxidase: in vitro and in vivo studies, Biochim. Biophys. Acta, 1607, 27–34.

    CAS  PubMed  Google Scholar 

  104. Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., and Jarlier, V. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, 307, 223–227.

    CAS  PubMed  Google Scholar 

  105. Koul, A., Vranckx, L., Dhar, N., Gohlmann, H. W., Ozdemir, E., Neefs, J. M., Schulz, M., Lu, P., Mortz, E., McKinney, J. D., Andries, K., and Bald, D. (2014) Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodeling of bacterial metabolism, Nat. Commun., 5, 3369.

    PubMed Central  PubMed  Google Scholar 

  106. Berney, M., Hartman, T. E., and Jacobs, W. R., Jr. (2014) A Mycobacterium tuberculosis cytochrome bd oxidase mutant is hypersensitive to bedaquiline, MBio, 5, e01275–01214.

    PubMed Central  PubMed  Google Scholar 

  107. Pethe, K., Bifani, P., Jang, J., Kang, S., Park, S., Ahn, S., Jiricek, J., Jung, J., Jeon, H. K., Cechetto, J., Christophe, T., Lee, H., Kempf, M., Jackson, M., Lenaerts, A. J., Pham, H., Jones, V., Seo, M. J., Kim, Y. M., Seo, M., Seo, J. J., Park, D., Ko, Y., Choi, I., Kim, R., Kim, S. Y., Lim, S., Yim, S. A., Nam, J., Kang, H., Kwon, H., Oh, C. T., Cho, Y., Jang, Y., Kim, J., Chua, A., Tan, B. H., Nanjundappa, M. B., Rao, S. P., Barnes, W. S., Wintjens, R., Walker, J. R., Alonso, S., Lee, S., Kim, J., Oh, S., Oh, T., Nehrbass, U., Han, S. J., No, Z., Lee, J., Brodin, P., Cho, S. N., Nam, K., and Kim, J. (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis, Nat. Med., 19, 1157–1160.

    CAS  PubMed  Google Scholar 

  108. Arora, K., Ochoa-Montano, B., Tsang, P. S., Blundell, T. L., Dawes, S. S., Mizrahi, V., Bayliss, T., Mackenzie, C. J., Cleghorn, L. A., Ray, P. C., Wyatt, P. G., Uh, E., Lee, J., Barry, C. E., 3rd, and Boshoff, H. I. (2014) Respiratory flexibility in response to inhibition of cytochrome c oxidase in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 58, 6962–6965.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Borisov.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 5, pp. 669–681.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, V.B., Forte, E., Siletsky, S.A. et al. Cytochrome bd protects bacteria against oxidative and nitrosative stress: A potential target for next-generation antimicrobial agents. Biochemistry Moscow 80, 565–575 (2015). https://doi.org/10.1134/S0006297915050077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050077

Key words

Navigation